83,332 research outputs found

    Maximizing the number of nonnegative subsets

    Full text link
    Given a set of nn real numbers, if the sum of elements of every subset of size larger than kk is negative, what is the maximum number of subsets of nonnegative sum? In this note we show that the answer is (n−1k−1)+(n−1k−2)+⋯+(n−10)+1\binom{n-1}{k-1} + \binom{n-1}{k-2} + \cdots + \binom{n-1}{0}+1, settling a problem of Tsukerman. We provide two proofs, the first establishes and applies a weighted version of Hall's Theorem and the second is based on an extension of the nonuniform Erd\H{o}s-Ko-Rado Theorem

    Solving Medium-Density Subset Sum Problems in Expected Polynomial Time: An Enumeration Approach

    Full text link
    The subset sum problem (SSP) can be briefly stated as: given a target integer EE and a set AA containing nn positive integer aja_j, find a subset of AA summing to EE. The \textit{density} dd of an SSP instance is defined by the ratio of nn to mm, where mm is the logarithm of the largest integer within AA. Based on the structural and statistical properties of subset sums, we present an improved enumeration scheme for SSP, and implement it as a complete and exact algorithm (EnumPlus). The algorithm always equivalently reduces an instance to be low-density, and then solve it by enumeration. Through this approach, we show the possibility to design a sole algorithm that can efficiently solve arbitrary density instance in a uniform way. Furthermore, our algorithm has considerable performance advantage over previous algorithms. Firstly, it extends the density scope, in which SSP can be solved in expected polynomial time. Specifically, It solves SSP in expected O(nlog⁥n)O(n\log{n}) time when density d≄c⋅n/log⁥nd \geq c\cdot \sqrt{n}/\log{n}, while the previously best density scope is d≄c⋅n/(log⁥n)2d \geq c\cdot n/(\log{n})^{2}. In addition, the overall expected time and space requirement in the average case are proven to be O(n5log⁥n)O(n^5\log n) and O(n5)O(n^5) respectively. Secondly, in the worst case, it slightly improves the previously best time complexity of exact algorithms for SSP. Specifically, the worst-case time complexity of our algorithm is proved to be O((n−6)2n/2+n)O((n-6)2^{n/2}+n), while the previously best result is O(n2n/2)O(n2^{n/2}).Comment: 11 pages, 1 figur

    Near-optimal mean value estimates for multidimensional Weyl sums

    Full text link
    We obtain sharp estimates for multidimensional generalisations of Vinogradov's mean value theorem for arbitrary translation-dilation invariant systems, achieving constraints on the number of variables approaching those conjectured to be the best possible. Several applications of our bounds are discussed

    Percentile Queries in Multi-Dimensional Markov Decision Processes

    Full text link
    Markov decision processes (MDPs) with multi-dimensional weights are useful to analyze systems with multiple objectives that may be conflicting and require the analysis of trade-offs. We study the complexity of percentile queries in such MDPs and give algorithms to synthesize strategies that enforce such constraints. Given a multi-dimensional weighted MDP and a quantitative payoff function ff, thresholds viv_i (one per dimension), and probability thresholds αi\alpha_i, we show how to compute a single strategy to enforce that for all dimensions ii, the probability of outcomes ρ\rho satisfying fi(ρ)≄vif_i(\rho) \geq v_i is at least αi\alpha_i. We consider classical quantitative payoffs from the literature (sup, inf, lim sup, lim inf, mean-payoff, truncated sum, discounted sum). Our work extends to the quantitative case the multi-objective model checking problem studied by Etessami et al. in unweighted MDPs.Comment: Extended version of CAV 2015 pape
    • 

    corecore