3,399 research outputs found

    Peering into the Dark: Investigating dark matter and neutrinos with cosmology and astrophysics

    Get PDF
    The LCDM model of modern cosmology provides a highly accurate description of our universe. However, it relies on two mysterious components, dark matter and dark energy. The cold dark matter paradigm does not provide a satisfying description of its particle nature, nor any link to the Standard Model of particle physics. I investigate the consequences for cosmological structure formation in models with a coupling between dark matter and Standard Model neutrinos, as well as probes of primordial black holes as dark matter. I examine the impact that such an interaction would have through both linear perturbation theory and nonlinear N-body simulations. I present limits on the possible interaction strength from cosmic microwave background, large scale structure, and galaxy population data, as well as forecasts on the future sensitivity. I provide an analysis of what is necessary to distinguish the cosmological impact of interacting dark matter from similar effects. Intensity mapping of the 21 cm line of neutral hydrogen at high redshift using next generation observatories, such as the SKA, would provide the strongest constraints yet on such interactions, and may be able to distinguish between different scenarios causing suppressed small scale structure. I also present a novel type of probe of structure formation, using the cosmological gravitational wave signal of high redshift compact binary mergers to provide information about structure formation, and thus the behaviour of dark matter. Such observations would also provide competitive constraints. Finally, I investigate primordial black holes as an alternative dark matter candidate, presenting an analysis and framework for the evolution of extended mass populations over cosmological time and computing the present day gamma ray signal, as well as the allowed local evaporation rate. This is used to set constraints on the allowed population of low mass primordial black holes, and the likelihood of witnessing an evaporation

    Circulation Statistics in Homogeneous and Isotropic Turbulence

    Full text link
    This is the committee version of a Thesis presented to the PostGrad Program in Physics of the Physics Institute of the Federal University of Rio de Janeiro (UFRJ), as a necessary requirement for the title of Ph.D. in Science (Physics). The development of the Vortex Gas Model (VGM) introduces a novel statistical framework for describing the characteristics of velocity circulation. In this model, the underlying foundations rely on the statistical attributes of two fundamental constituents. The first is a GMC field that governs intermittent behavior and the second constituent is a Gaussian Free field responsible for the partial polarization of the vortices in the gas. The model is revisited in a more sophisticated language, where volume exclusion among vortices is addressed. These additions were subsequently validated through numerical simulations of turbulent Navier-Stokes equations. This revised approach harmonizes with the multifractal characteristics exhibited by circulation statistics, offering a compelling elucidation for the phenomenon of linearization of the statistical circulation moments, observed in recent numerical simulation. In the end, a field theoretical approach, known as Martin-Siggia-Rose-Janssen-de Dominicis (MSRJD) functional method is carried out in the context of circulation probability density function. This approach delves into the realm of extreme circulation events, often referred to as Instantons, through two distinct methodologies: The First investigates the linear solutions and, by a renormalization group argument a time-rescaling symmetry is discussed. Secondly, a numerical strategy is implemented to tackle the nonlinear instanton equations in the axisymmetric approximation. This approach addresses the typical topology exhibited by the velocity field associated with extreme circulation events.Comment: Ph.D. Thesis - preliminary versio

    Hybrid BEM-FEM for 2D and 3D dynamic soil-structure interaction considering arbitrary layered half-space and nonlinearities

    Get PDF
    Experiences and studies have shown that soil-structure interaction (SSI) effect has a vital role in the dynamic behaviour of a soil-structure system. Despite this, analyses involving dynamic SSI are still challenging for practicing engineers due to their complexity and accessibility. In this thesis, the hybrid BEM-FEM implementation is aimed at practicality by combining commercial software and an in-house code. The pre-processing task can be performed under one graphical environment, and it is enhanced with the capability to compute different types of dynamic sources and other improvements to increase its efficiency, accuracy, and modeling flexibility. Further, the underlying soil is commonly a layered profile with arbitrary geometries. Most existing solutions solve the problem through simplification of the geometry and pattern. One of the main contributions in this thesis is the development of layer-wise condensation method to solve these cases using hybrid BEM-FEM. The method significantly reduces the computational memory requirement. Another challenge in the dynamic SSI addressed in this work is the consideration of secondary nonlinearities. Existing solutions using the time domain BEM and iterative hybrid method are computationally costly, and implementation of such a hybrid method on commercial software is tedious. The solution to address this case using a sequential frequency-time domain procedure is presented. The relatively simple approach makes it possible to consider the nonlinearities in the simulation without using the time domain BEM and without requiring additional iterations. Case studies demonstrating the application of the enhanced hybrid method are presented including cases of bridges, containment structures, and a 3D multi-storey structure under point source and double-couple sources. These case studies illustrate the role of following critical factors such as the site effect, inhomogeneity, and nonlinearities

    Физика космоса : труды 50-й Международной студенческой научной конференции (Екатеринбург, 30 января — 3 февраля. 2023 г.)

    Full text link
    В сборнике представлены доклады и сообщения студенческой научной конференции, которая ежегодно проводится в Астрономической обсерватории Уральского федерального университета. Цель конференции — обобщить достижения в области астрономии и астрофизики и способствовать формированию навыков и способностей молодых исследователей. Сборник предназначен для профессиональных астрономов и физиков, студентов и аспирантов соответствующих специальностей.Отдел по делам молодежи администрации Октябрьского района г. Екатеринбурга; Уральский федеральный университет имени первого Президента России Б.Н. Ельцин

    Numerical modeling for groundwater protection in the Venetian plain between the Brenta and Piave Rivers

    Get PDF
    The Ph.D. project tackled the scientific challenges that a water utility company in the northeast of Italy, Alto Trevigiano Servizi, must face in the elaboration of the Water Safety Plan (WSP), which is the most effective preventive tool to ensure good quality water and consumers health protection. The WSPs guidelines were defined by the World Health Organization and were subsequently implemented in a European Directive and Italian law. The thesis, after an introduction on the scientifical issues, started with the description of the work done to reproduce in CATHY the model that the PhD student Tommaso Trentin built using the software FeFlow. The study area has an extension of around 900 km2 and is delimited to the north-east by the Piave river, to the west side by a flow line parallel to the Brenta river, while the southern boundary is closed by the Risorgive area, and the North boundary by the Montello and colli Asolani. The north part is characterized by an undifferentiated aquifer, while the southern part hosts a multilayer system with 8 confined aquifers. Some modifications, e.g., the mesh refining, the sensitivity analysis, were implemented in the model to try to improve its performance. Also, the soil conductivity of the shallowest soil layer (1 m) was changed following the indications of Carta della permeabilità dei suoli from ARPAV site and the boundary conditions of the norther part of the domain were better defined. Before the calibration step, the initial mesh that hosts the multilayers systems of 8 aquitards and 8 aquifers was cut at the bottom of the first unconfined aquifer. This allowed to speed up the calibration and focus on the aquifer directly influenced by the atmospheric boundary conditions and subject to recharge variability. The calibration was performed alternating FePESt and CATHY. FePEST, having already implemented the PEST algorithm, allowed to easily implement the pilot points method that in CATHY would have require too much time. Both the bottom of the unconfined aquifer and the hydraulic conductivity field were calibrated. The improvement in terms of RMSE was relevant, the errors being reduced to 1/3. Once the calibrated model was obtained, also a validation step was performed. The resulting model allowed us to investigate an irrigation variation scenario, planned in compliance with the European directive indication, to save water: currently a large area of the domain is interested by flood irrigation considered no more sustainable, since it requires a large amount of water. The scenario considered a switch to sprinkler irrigation only. The results show a slight groundwater head decrease in the wells located in the area affected by the irrigation technique conversion. This result was confirmed by the difference of the total cumulative recharge over the domain in case of sprinkler and flood irrigation and sprinkler irrigation only. The model seems to be not particularly affected by the irrigation modification but more sensitive to the hydraulic conductivity values: a map of the mean distribution of the recharge shows that the larger fraction of the recharge occurs where hydraulic conductivity is larger. Parallelly to the continuation of this project, also a study on the analysis of numerical dispersion affecting CATHY model was carry out. This study will be useful for future simulations on vulnerability to contaminations that require an accurate solute transport modeling. Due to lack of time it was not possible to investigate the contaminants transport phenomenon in the area of study to accurately define the wells’ head protection areas, important part of the WSPs, but the preliminary results obtained from the model we built can be considered a good starting point for future transport studies.The Ph.D. project tackled the scientific challenges that a water utility company in the northeast of Italy, Alto Trevigiano Servizi, must face in the elaboration of the Water Safety Plan (WSP), which is the most effective preventive tool to ensure good quality water and consumers health protection. The WSPs guidelines were defined by the World Health Organization and were subsequently implemented in a European Directive and Italian law. The thesis, after an introduction on the scientifical issues, started with the description of the work done to reproduce in CATHY the model that the PhD student Tommaso Trentin built using the software FeFlow. The study area has an extension of around 900 km2 and is delimited to the north-east by the Piave river, to the west side by a flow line parallel to the Brenta river, while the southern boundary is closed by the Risorgive area, and the North boundary by the Montello and colli Asolani. The north part is characterized by an undifferentiated aquifer, while the southern part hosts a multilayer system with 8 confined aquifers. Some modifications, e.g., the mesh refining, the sensitivity analysis, were implemented in the model to try to improve its performance. Also, the soil conductivity of the shallowest soil layer (1 m) was changed following the indications of Carta della permeabilità dei suoli from ARPAV site and the boundary conditions of the norther part of the domain were better defined. Before the calibration step, the initial mesh that hosts the multilayers systems of 8 aquitards and 8 aquifers was cut at the bottom of the first unconfined aquifer. This allowed to speed up the calibration and focus on the aquifer directly influenced by the atmospheric boundary conditions and subject to recharge variability. The calibration was performed alternating FePESt and CATHY. FePEST, having already implemented the PEST algorithm, allowed to easily implement the pilot points method that in CATHY would have require too much time. Both the bottom of the unconfined aquifer and the hydraulic conductivity field were calibrated. The improvement in terms of RMSE was relevant, the errors being reduced to 1/3. Once the calibrated model was obtained, also a validation step was performed. The resulting model allowed us to investigate an irrigation variation scenario, planned in compliance with the European directive indication, to save water: currently a large area of the domain is interested by flood irrigation considered no more sustainable, since it requires a large amount of water. The scenario considered a switch to sprinkler irrigation only. The results show a slight groundwater head decrease in the wells located in the area affected by the irrigation technique conversion. This result was confirmed by the difference of the total cumulative recharge over the domain in case of sprinkler and flood irrigation and sprinkler irrigation only. The model seems to be not particularly affected by the irrigation modification but more sensitive to the hydraulic conductivity values: a map of the mean distribution of the recharge shows that the larger fraction of the recharge occurs where hydraulic conductivity is larger. Parallelly to the continuation of this project, also a study on the analysis of numerical dispersion affecting CATHY model was carry out. This study will be useful for future simulations on vulnerability to contaminations that require an accurate solute transport modeling. Due to lack of time it was not possible to investigate the contaminants transport phenomenon in the area of study to accurately define the wells’ head protection areas, important part of the WSPs, but the preliminary results obtained from the model we built can be considered a good starting point for future transport studies

    University of Windsor Graduate Calendar 2023 Spring

    Get PDF
    https://scholar.uwindsor.ca/universitywindsorgraduatecalendars/1027/thumbnail.jp

    Streamer Discharges:steady propagation and interaction with trace gases

    Get PDF

    Global high-order numerical schemes for the time evolution of the general relativistic radiation magneto-hydrodynamics equations

    Full text link
    Modeling correctly the transport of neutrinos is crucial in some astrophysical scenarios such as core-collapse supernovae and binary neutron star mergers. In this paper, we focus on the truncated-moment formalism, considering only the first two moments (M1 scheme) within the grey approximation, which reduces Boltzmann seven-dimensional equation to a system of 3+13+1 equations closely resembling the hydrodynamic ones. Solving the M1 scheme is still mathematically challenging, since it is necessary to model the radiation-matter interaction in regimes where the evolution equations become stiff and behave as an advection-diffusion problem. Here, we present different global, high-order time integration schemes based on Implicit-Explicit Runge-Kutta (IMEX) methods designed to overcome the time-step restriction caused by such behavior while allowing us to use the explicit RK commonly employed for the MHD and Einstein equations. Finally, we analyze their performance in several numerical tests.Comment: 18 + 6. Updated manuscript matching published version + additional appendix "Comparing the convergence order of IMEX and semi-implicit schemes

    Bluff-body aerodynamics and transfer functions for non-catching precipitation measurement instruments.

    Get PDF
    Starting from the old and trivial technique of using a graduated cylinder to collect and manually measure precipitation, numerous advances were made for in-situ precipitation gauges. After decades of scarce innovation, a new family of in-situ precipitation gauges was developed. They are called Non-Catching Gauges (NCG) since they can measure precipitation and its microphysical and dynamic characteristics without the need to collect hydrometeors. The attention that NCGs are gathering today is quite notable, even if they represent only a small fraction of the total precipitation gauges deployed. Their use in the field is bound to continuously grow in time, due to several advantages, discussed in this work, that such instruments present over more traditional ones. However, their major disadvantage is their increased complexity, the effects of which are highlighted by the literature through evidence of calibration and correction issues. Various field intercomparison experiments showed the evidence of significant biases in NCGs measurements. The goal of this work is to investigate two main sources of bias, producing the largest impact on precipitation measurements. The first source of bias evaluated in this work is due to instrument calibration. Several attempts at developing a calibration procedure are presented both in the scientific literature and from the manufacturers. Nevertheless, those methods are hardly traceable to international standards and, in most cases, lack a suitable reference measure to compare against the instrumental output. In this work, a fully traceable calibration procedure is proposed, in analogy with the one already existing for catching type gauges. This requires drops of know diameter and fall velocity to be released over the instrument sensing area. For this reason, the Calibrated Rainfall Generator (CRG) is developed, able to release single drops on demand and measure them independently just before they reach the instrument sensing area. Detachment of drops is obtained by using an electrostatic system, while the measure of their diameter and fall velocity is performed by means of a photogrammetric approach. The Thies Laser Precipitation Monitor (LPM) was tested using the CRG considering two different output telegrams. The first one provides the raw measure of each drop sensed by the instrument while the second one provides the Particle Size and fall Velocity Distribution (PSVD) matrix. Both telegrams show a tendency to underestimate the drop diameter that increases with decreasing the drop size, while errors in the fall velocity measurements have a less definite trend. Furthermore, tests also show a large standard deviation of the measurements, significantly higher than the one of the reference measurements. The underestimation of drop size and fall velocity is also reflected into the RI measurements provided by the instrument, with a resulting underestimation that decreases with increasing the precipitation intensity. The difference between the two telegrams considered is large and may only be explained by differences in the instrument internal processing for the two telegrams. The second instrument tested using the CRG is the Biral VPF-750, a light scatter gauge. Results show a tendency to underestimate both the drop diameter and fall velocity. In the first case, the error decreases with increasing the drops size, similarly to the Thies LPM. However, the error in the fall velocity is considerably higher and instead increases with increasing the drop sizes. In terms of Rainfall Intensity (RI), the instrument shows a strong underestimation that, due to the opposite trend observed for drop diameter and fall velocity, is almost constant with the precipitation intensity. Both instruments show significant biases, corroborated by field intercomparison results from the literature, that is often larger than 10% for the investigated variables. This means that both gauges cannot be classified according to the guidelines proposed in this work for the development of a standard calibration procedure, derived from those already existing for CGs. The second source of bias is wind, a well-established source of environmental error for traditional Catching-type Gauges (CG) but also affecting NCGs. The wind-induced bias is investigated using a numerical approach, combining Computational Fluid Dynamics (CFD) and Lagrangian Particle Tracking (LPT) models. Two different CFD models were tested, the first providing a time-independent steady state solution, while the other is fully time-dependent. Both were compared against wind tunnel results, showing a good agreement with the experimental data, and proving their ability to capture the complex aerodynamic response of instruments when impacted by the wind. The Thies Laser Precipitation Monitor (LPM) is first chosen as a test instrument, being representative of the typical NCGs that are currently deployed in the field. CFD simulations show that wind direction is the primary factor determining the aerodynamic disturbance close to the instrument sensing area. Similar results were found for the OTT Parsivel2, that is another widely diffused NCG. For wind flow parallel to the laser beam, strong disturbance close to the gauge sensing area is observed. Meanwhile, wind coming perpendicular to the laser beam produces minimal flow disturbance. The wind-induced bias is also investigated for the Vaisala WXT-520, an impact disdrometer. This gauge is smaller ad has a more regular shape if compared to the optical disdrometers, but its measuring principle is based on the detection of the drop kinetic energy, while the size and fall velocity are indirectly obtained. CFD simulations show limited disturbance close to the sensing area of the instrument and a negligeable dependency on the wind direction (due to a more radially symmetric geometry). The instrument body further provide minimal shielding of the sensing area. Strong updraft however occurs upstream of the instrument for all wind directions, significantly affecting the fall velocity of the smaller and lighter drops. Using these results, three different LPT models are also tested. The first is an uncoupled model based on the time-independent CFD results and is used to evaluate the instrument performance for all wind speeds and directions considered. The other two models, due to their high computational requirements, are applied only to a selected number of combinations of wind speed and direction for the Thies LPM. Results show a good agreement and allow concluding that the significant increase in computational burden of the latter two models does not significantly improve the accuracy of the results. However, the one-way coupled model highlights the role of turbulence, that may have a significant impact on the instrumental performance when strong recirculation is present near its sensing area. In the case of the two other gauges, only the uncoupled LPT model in combination with the time-independent CFD model is used, this being the best compromise between numerical accuracy and computational cost. Results of the LPT model are presented in terms of variation in the retrieval of precipitation microphysical properties, Catch Ratios (CR), Collection Efficiency (CE) and Radar Retrieval Efficiency (RRE). For the three gauges considered, it is shown that smaller hydrometeors fall velocity close to the instrument sensing area is strongly affected by wind and is – in general – reduced. A significant wind-induced bias is also evident in the Drop Size Distribution (DSD) measured by the gauges. Optical gauges may report a significant lower number of small hydrometeors even at moderate wind speed. Due to the gauge body partially shielding the sensing area. Impact gauge DSD is also strongly influenced by wind, since hydrometeors with high kinetic energy are sensed as having a large diameter. The DSD is therefore shifted towards larger diameters and the instrument tends to overestimate the number of hydrometeors of all sizes. This suggests that the different shapes of the DSD function reported in the field by different instruments may be due, at least partially, to wind-induced biases. In terms of integral precipitation characteristics, the wind direction is the primary factor in determining the performance of optical gauges in windy conditions. For wind parallel to the laser beam, the instrument senses less and less precipitation with increasing the wind speed, with no hydrometeors even reaching the sensing area in some configurations . On the other hand, when the wind is perpendicular to the laser beam, the instrument performs similarly for all wind speeds, with CR and CE values close to one and only a moderate amount of overcatch being observed at high wind speed. Only for the OTT Parsivel2 a non negligeable overcatch is also evident for wind coming at a 45° angle with respect to the beam direction. For the Vaisala WXT-520 the Kinetic Catch Ratio (KCR) and Kinetic Collection Efficiency (KCE) are defined as substitutes for the CR and CE. At low wind speed, the KCR is below unity, due to the reduction in fall velocity produced by the updraft. However, with increasing wind speed, the kinetic energy of hydrometeors carried by wind increases considerably, overcoming the reduction caused by the updraft close to the gauge. For this reason, KCR values becomes much higher than unity, especially for small size hydrometeors. The increase in kinetic energy is reflected into increased KCE values, that are close to unity at low wind speed, but rapidly grow with increasing the wind speed. Wind direction has instead very limited influence on the measurements. In terms of RRE, optical gauges present limited bias for all combinations of wind speed and direction, except for the highest wind speed and flow parallel to the laser beam. This is because a large portion of the radar reflectivity factor (dBZ) is due to medium and large size hydrometeors, that are less influenced by wind. In the case of the impact disdrometer instead, RRE behaves very similarly to the CE, with values that increases with increasing wind speed. This is due to the shift toward larger diameters noted in the DSD that occurs when hydrometeors kinetic energy is increased by wind

    Numerical simulation of combustion instability: flame thickening and boundary conditions

    Get PDF
    Combustion-driven instabilities are a significant barrier for progress for many avenues of immense practical relevance in engineering devices, such as next generation gas turbines geared towards minimising pollutant emissions being susceptible to thermoacoustic instabilities. Numerical simulations of such reactive systems must try to balance a dynamic interplay between cost, complexity, and retention of system physics. As such, new computational tools of relevance to Large Eddy Simulation (LES) of compressible, reactive flows are proposed and evaluated. High order flow solvers are susceptible to spurious noise generation at boundaries which can be very detrimental for combustion simulations. Therefore Navier-Stokes Characteristic Boundary conditions are also reviewed and an extension to axisymmetric configurations proposed. Limitations and lingering open questions in the field are highlighted. A modified Artificially Thickened Flame (ATF) model coupled with a novel dynamic formulation is shown to preserve flame-turbulence interaction across a wide range of canonical configurations. The approach does not require efficiency functions which can be difficult to determine, impact accuracy and have limited regimes of validity. The method is supplemented with novel reverse transforms and scaling laws for relevant post-processing from the thickened to unthickened state. This is implemented into a wider Adaptive Mesh Refinement (AMR) context to deliver a unified LES-AMR-ATF framework. The model is validated in a range of test case showing noticeable improvements over conventional LES alternatives. The proposed modifications allow meaningful inferences about flame structure that conventionally may have been restricted to the domain of Direct Numerical Simulation. This allows studying the changes in small-scale flow and scalar topologies during flame-flame interaction. The approach is applied to a dual flame burner setup, where simulations show inclusion of a neighbouring burner increases compressive flow topologies as compared to a lone flame. This may lead to favouring convex scalar structures that are potentially responsible for the increase in counter-normal flame-flame interactions observed in experiments.Open Acces
    corecore