129,582 research outputs found

    Acceleration effect of coupled oscillator systems

    Full text link
    We have developed a curved isochron clock (CIC) by modifying the radial isochron clock to provide a clean example of the acceleration (deceleration) effect. By analyzing a two-body system of coupled CICs, we determined that an unbalanced mutual interaction caused by curved isochron sets is the minimum mechanism needed for generating the acceleration (deceleration) effect in coupled oscillator systems. From this we can see that the Sakaguchi and Kuramoto (SK) model which is a class of non-frustrated mean feild model has an acceleration (deceleration) effect mechanism. To study frustrated coupled oscillator systems, we extended the SK model to two oscillator associative memory models, one with symmetric and one with asymmetric dilution of coupling, which also have the minimum mechanism of the acceleration (deceleration) effect. We theoretically found that the {\it Onsager reaction term} (ORT), which is unique to frustrated systems, plays an important role in the acceleration (de! celeration) effect. These two models are ideal for evaluating the effect of the ORT because, with the exception of the ORT, they have the same order parameter equations. We found that the two models have identical macroscopic properties, except for the acceleration effect caused by the ORT. By comparing the results of the two models, we can extract the effect of the ORT from only the rotation speeds of the oscillators.Comment: 35 pages, 10 figure

    Design and Evaluation of the Efficiency of Channel Coding LDPC Codes for 5G Information Technology

    Get PDF
    This paper proposes a result of an investigation of a topical problem and the development of models for efficient coding in information networks based on codes with a low density of parity check. The main advantage of the technique is the presented recommendations for choosing a signal-code construction is carried out taking into account the code rate and the number of iterations decoding for envisaging the defined noise immunity indices. The noise immunity of signal-code constructions based on low-density codes has been increased by combining them with multi position digital modulation. This solution eventually allowed to develop a strategy for decoder designing of such codes and to optimize the code structure for a specific information network. To test the effectiveness of the proposed method, MATLAB simulations are carried out under for various Information channels binary symmetric channel (BSC), a channel with additive white Gaussian noise (AWGN), binary asymmetric channel (BAC), asymmetric channel Z type. In addition, different code rates were used during the experiment. The study of signal-code constructions with differential modulation is presented. The efficiency of different decoding algorithms is investigated. The advantage of the obtained results over the known ones consists in determining the maximum noise immunity for the proposed codes. The energy gain was on the order of 6 dB, and an increase in the number of decoding iterations from 3 to 10 leads to a gain in coding energy of 5 dB. Envisaged that the results obtained can be very useful in the development of practical coding schemes in 5G networks

    Connected Coordination: Network Structure and Group Coordination

    Get PDF
    Networks can affect a group’s ability to solve a coordination problem. We utilize laboratory experiments to study the conditions under which groups of subjects can solve coordination games. We investigate a variety of different network structures, and we also investigate coordination games with symmetric and asymmetric payoffs. Our results show that network connections facilitate coordination in both symmetric and asymmetric games. Most significantly, we find that increases in the number of network connections encourage coordination even when payoffs are highly asymmetric. These results shed light on the conditions that may facilitate coordination in real-world networks

    Generating global network structures by triad types

    Full text link
    This paper addresses the question of whether it is possible to generate networks with a given global structure (defined by selected blockmodels, i.e., cohesive, core-periphery, hierarchical and transitivity), considering only different types of triads. Two methods are used to generate networks: (i) the method of relocating links; and (ii) the Monte Carlo Multi Chain algorithm implemented in the "ergm" package implemented in R. Although all types of triads can generate networks with the selected blockmodel types, the selection of only a subset of triads improves the generated networks' blockmodel structure. However, in the case of a hierarchical blockmodel without complete blocks on the diagonal, additional local structures are needed to achieve the desired global structure of generated networks. This shows that blockmodels can emerge based on only local processes that do not take attributes into account

    Achievable Sum Rates of Half- and Full-Duplex Bidirectional OFDM Communication Links

    Full text link
    While full-duplex (FD) transmission has the potential to double the system capacity, its substantial benefit can be offset by the self-interference (SI) and non-ideality of practical transceivers. In this paper, we investigate the achievable sum rates (ASRs) of half-duplex (HD) and FD transmissions with orthogonal frequency division multiplexing (OFDM), where the non-ideality is taken into consideration. Four transmission strategies are considered, namely HD with uniform power allocation (UPA), HD with non-UPA (NUPA), FD with UPA, and FD with NUPA. For each of the four transmission strategies, an optimization problem is formulated to maximize its ASR, and a (suboptimal/optimal) solution with low complexity is accordingly derived. Performance evaluations and comparisons are conducted for three typical channels, namely symmetric frequency-flat/selective and asymmetric frequency-selective channels. Results show that the proposed solutions for both HD and FD transmissions can achieve near optimal performances. For FD transmissions, the optimal solution can be obtained under typical conditions. In addition, several observations are made on the ASR performances of HD and FD transmissions.Comment: To appear in IEEE TVT. This paper solves the problem of sum achievable rate optimization of bidirectional FD OFDM link, where joint time and power allocation is involve

    Automated Synthesis of Distributed Self-Stabilizing Protocols

    Full text link
    In this paper, we introduce an SMT-based method that automatically synthesizes a distributed self-stabilizing protocol from a given high-level specification and network topology. Unlike existing approaches, where synthesis algorithms require the explicit description of the set of legitimate states, our technique only needs the temporal behavior of the protocol. We extend our approach to synthesize ideal-stabilizing protocols, where every state is legitimate. We also extend our technique to synthesize monotonic-stabilizing protocols, where during recovery, each process can execute an most once one action. Our proposed methods are fully implemented and we report successful synthesis of well-known protocols such as Dijkstra's token ring, a self-stabilizing version of Raymond's mutual exclusion algorithm, ideal-stabilizing leader election and local mutual exclusion, as well as monotonic-stabilizing maximal independent set and distributed Grundy coloring

    Simplifying Wireless Social Caching

    Full text link
    Social groups give the opportunity for a new form of caching. In this paper, we investigate how a social group of users can jointly optimize bandwidth usage, by each caching parts of the data demand, and then opportunistically share these parts among themselves upon meeting. We formulate this problem as a Linear Program (LP) with exponential complexity. Based on the optimal solution, we propose a simple heuristic inspired by the bipartite set-cover problem that operates in polynomial time. Furthermore, we prove a worst case gap between the heuristic and the LP solutions. Finally, we assess the performance of our algorithm using real-world mobility traces from the MIT Reality Mining project dataset and two mobility traces that were synthesized using the SWIM model. Our heuristic performs closely to the optimal in most cases, showing a better performance with respect to alternative solutions.Comment: Parts of this work were accepted for publication in ISIT 2016. A complete version is submitted to Transactions on Mobile Computin
    corecore