74 research outputs found

    Semicomputable Geometry

    Get PDF
    Computability and semicomputability of compact subsets of the Euclidean spaces are important notions, that have been investigated for many classes of sets including fractals (Julia sets, Mandelbrot set) and objects with geometrical or topological constraints (embedding of a sphere). In this paper we investigate one of the simplest classes, namely the filled triangles in the plane. We study the properties of the parameters of semicomputable triangles, such as the coordinates of their vertices. This problem is surprisingly rich. We introduce and develop a notion of semicomputability of points of the plane which is a generalization in dimension 2 of the left-c.e. and right-c.e. numbers. We relate this notion to Solovay reducibility. We show that semicomputable triangles admit no finite parametrization, for some notion of parametrization

    Optimal asymptotic bounds on the oracle use in computations from Chaitin’s Omega

    Get PDF
    Chaitin’s number is the halting probability of a universal prefix-free machine, and although it depends on the underlying enumeration of prefix-free machines, it is always Turing-complete. It can be observed, in fact, that for every computably enumerable (c.e.) real �, there exists a Turing functional via which computes �, and such that the number of bits of that are needed for the computation of the first n bits of � (i.e. the use on argument n) is bounded above by a computable function h(n) = n + o (n). We characterise the asymptotic upper bounds on the use of Chaitin’s in oracle computations of halting probabilities (i.e. c.e. reals). We show that the following two conditions are equivalent for any computable function h such that h(n)

    Computability Theory

    Get PDF
    Computability and computable enumerability are two of the fundamental notions of mathematics. Interest in effectiveness is already apparent in the famous Hilbert problems, in particular the second and tenth, and in early 20th century work of Dehn, initiating the study of word problems in group theory. The last decade has seen both completely new subareas develop as well as remarkable growth in two-way interactions between classical computability theory and areas of applications. There is also a great deal of work on algorithmic randomness, reverse mathematics, computable analysis, and in computable structure theory/computable model theory. The goal of this workshop is to bring together researchers representing different aspects of computability theory to discuss recent advances, and to stimulate future work
    • …
    corecore