615 research outputs found

    Soliton dynamics for fractional Schrodinger equations

    Full text link
    We investigate the soliton dynamics for the fractional nonlinear Schrodinger equation by a suitable modulational inequality. In the semiclassical limit, the solution concentrates along a trajectory determined by a Newtonian equation depending of the fractional diffusion parameter.Comment: 22 page

    Solitons supported by singular spatial modulation of the Kerr nonlinearity

    Full text link
    We introduce a setting based on the one-dimensional (1D) nonlinear Schroedinger equation (NLSE) with the self-focusing (SF) cubic term modulated by a singular function of the coordinate, |x|^{-a}. It may be additionally combined with the uniform self-defocusing (SDF) nonlinear background, and with a similar singular repulsive linear potential. The setting, which can be implemented in optics and BEC, aims to extend the general analysis of the existence and stability of solitons in NLSEs. Results for fundamental solitons are obtained analytically and verified numerically. The solitons feature a quasi-cuspon shape, with the second derivative diverging at the center, and are stable in the entire existence range, which is 0 < a < 1. Dipole (odd) solitons are found too. They are unstable in the infinite domain, but stable in the semi-infinite one. In the presence of the SDF background, there are two subfamilies of fundamental solitons, one stable and one unstable, which exist together above a threshold value of the norm (total power of the soliton). The system which additionally includes the singular repulsive linear potential emulates solitons in a uniform space of the fractional dimension, 0 < D < 1. A two-dimensional extension of the system, based on the quadratic nonlinearity, is formulated too.Comment: Physical Review A, in pres

    ABC Method and Fractional Momentum Layer for the FDTD Method to Solve the Schrödinger Equation on Unbounded Domains

    Get PDF
    The finite­difference time­domain (FDTD) method and its generalized variant (G­FDTD) are efficient numerical tools for solving the linear and nonlinear Schrödinger equations because not only are they explicit, allowing parallelization, but they also provide high­order accuracy with relatively inexpensive computational costs. In addition, the G­FDTD method has a relaxed stability condition when compared to the original FDTD method. It is important to note that the existing simulations of the G­FDTD scheme employed analytical solutions to obtain function values at the points along the boundary; however, in simulations for which the analytical solution is unknown, theoretical approximations for values at points along the boundary are desperately needed. Hence, the objective of this dissertation research is to develop absorbing boundary conditions (ABCs) so that the G­FDTD method can be used to solve the nonlinear Schrödinger equation when the analytical solution is unknown. To create the ABCs for the nonlinear Schrödinger equation, we initially determine the associated Engquist­Majda one­way wave equations and then proceed to develop a finite difference scheme for them. These ABCs are made to be adaptive using a windowed Fourier transform to estimate a value of the wavenumber of the carrier wave. These ABCs were tested using the nonlinear Schrödinger equation for 1D and 2D soliton propagation as well as Gaussian packet collision and dipole radiation. Results show that these ABCs perform well, but they have three key limitations. First, there are inherent reflections at the interface of the interior and boundary domains due to the different schemes used the two regions; second, to use the ABCs, one needs to estimate a value for the carrier wavenumber and poor estimates can cause even more reflection at the interface; and finally, the ABCs require different schemes in different regions of the boundary, and this domain decomposition makes the ABCs tedious both to develop and to implement. To address these limitations for the FDTD method, we employ the fractional­order derivative concept to unify the Schrödinger equation with its one­way wave equation over an interval where the fractional order is allowed to vary. Through careful construction of a variable­order fractional momentum operator, outgoing waves may enter the fractionalorder region with little to no reflection and, inside this region, any reflected portions of the wave will decay exponentially with time. The fractional momentum operator is then used to create a fractional­order FDTD scheme. Importantly, this single scheme can be used for the entire computational domain, and the scheme smooths the abrupt transition between the FDTD method and the ABCs. Furthermore, the fractional FDTD scheme relaxes the precision needed for the estimated carrier wavenumber. This fractional FDTD scheme is tested for both the linear and nonlinear Schrödinger equations. Example cases include a 1D Gaussian packet scattering off of a potential, a 1D soliton propagating to the right, as well as 2D soliton propagation, and the collision of Gaussian packets. Results show that the fractional FDTD method outperforms the FDTD method with ABCs

    Extractions of some new travelling wave solutions to the conformable Date-Jimbo-Kashiwara-Miwa equation

    Get PDF
    In this paper, complex and combined dark-bright characteristic properties of nonlinear Date-Jimbo-Kashiwara-Miwa equation with conformable are extracted by using two powerful analytical approaches. Many graphical representations such as 2D, 3D and contour are also reported. Finally, general conclusions of about the novel findings are introduced at the end of this manuscript

    Necklace-ring vector solitons

    Get PDF
    We introduce novel classes of optical vector solitons that consist of incoherently coupled self-trapped “necklace” beams carrying zero, integer, and even fractional angular momentum. Because of the stabilizing mutual attraction between the components, such stationary localized structures exhibit quasistable propagation for much larger distances than the corresponding scalar vortex solitons and expanding scalar necklace beams

    Optical solitons and modulation instability analysis to the quadratic-cubic nonlinear Schrödinger equation

    Get PDF
    This paper obtains the dark, bright, dark-bright, dark-singular optical and singular soliton solutions to the nonlinear Schrödinger equation with quadratic-cubic nonlinearity (QC-NLSE), which describes the propagation of solitons through optical fibers. The adopted integration scheme is the sine-Gordon expansion method (SGEM). Further more, the modulation instability analysis (MI) of the equation is studied based on the standard linear-stability analysis, and the MI gain spectrum is got. Physical interpretations of the acquired results are demonstrated. It is hoped that the results reported in this paper can enrich the nonlinear dynamical behaviors of the PNSE
    corecore