1,542 research outputs found

    Decomposition Method for Kdv Boussinesq and Coupled Kdv Boussinesq Equations

    Get PDF
    This paper obtains the solitary wave solutions of two different forms of Boussinesq equations that model the study of shallow water waves in lakes and ocean beaches. The decomposition method using He’s polynomials is applied to solve the governing equations. The travelling wave hypothesis is also utilized to solve the generalized case of coupled Boussinesq equations, and, thus, an exact soliton solution is obtained. The results are also supported by numerical simulations. Keywords: Decomposition Method, He’s polynomials, cubic Boussinesq equation, Coupled Boussinesq equation

    Radiating solitary waves in coupled Boussinesq equations

    Get PDF
    In this paper we are concerned with the analytical description of radiating solitary wave solutions of coupled regularised Boussinesq equations. This type of solution consists of a leading solitary wave with a small-amplitude co-propagating oscillatory tail, and emerges from a pure solitary wave solution of a symmetric reduction of the full system. We construct an asymptotic solution, where the leading order approximation in both components is obtained as a particular solution of the regularised Boussinesq equations in the symmetric case. At the next order, the system uncouples into two linear non-homogeneous ordinary differential equations with variable coefficients, one correcting the localised part of the solution, which we find analytically, and the other describing the co-propagating oscillatory tail. This latter equation is a fourth order ordinary differential equation and is solved approximately by two different methods, each exploiting the assumption that the leading solitary wave has a small amplitude, and thus enabling an explicit estimate for the amplitude of the oscillating tail. These estimates are compared with corresponding numerical simulations

    On Boussinesq-type models for long longitudinal waves in elastic rods

    Get PDF
    In this paper we revisit the derivations of model equations describing long nonlinear longitudinal bulk strain waves in elastic rods within the scope of the Murnaghan model in order to derive a Boussinesq-type model, and extend these derivations to include axially symmetric loading on the lateral boundary surface, and longitudinal pre-stretch. We systematically derive two forced Boussinesq-type models from the full equations of motion and non-zero surface boundary conditions, utilising the presence of two small parameters characterising the smallness of the wave amplitude and the long wavelength compared to the radius of the waveguide. We compare the basic dynamical properties of both models (linear dispersion curves and solitary wave solutions). We also briefly describe the laboratory experiments on generation of bulk strain solitary waves in the Ioffe Institute, and suggest that this generation process can be modelled using the derived equations.Comment: 19 pages, 5 figures, submitted to the Special Issue of Wave Motion, "Nonlinear Waves in Solids", in Memory of Professor Alexander M. Samsono
    • …
    corecore