528 research outputs found

    Towards a More Flexible, Sustainable, Efficient and Reliable Induction Cooking: A Power Semiconductor Device Perspective

    Get PDF
    Esta tesis tiene como objetivo fundamental la mejora de la flexibilidad, sostenibilidad, eficiencia y fiabilidad de las cocinas de inducción por medio de la utilización de dispositivos semiconductores de potencia: Dentro de este marco, existe una funcionalidad que presenta un amplio rango de mejora. Se trata de la función de multiplexación de potencia, la cual pretende resolverse de una manera más eficaz por medio de la sustitución de los comúnmente utilizados relés electromecánicos por dispositivos de estado sólido. De entre todas las posibles implementaciones, se ha identificado entre las más prometedoras a aquellas basadas en dispositivos de alta movilidad de electrones (HEMT) de Nitruro de Galio (GaN) y de aquellas basadas en Carburo de Silicio (SiC), pues presentan unas características muy superiores a los relés a los que se pretende sustituir. Por el contrario, otras soluciones que inicialmente parecían ser muy prometedoras, como los MOSFETs de Súper-Unión, han presentado una serie de comportamientos anómalos, que han sido estudiados minuciosamente por medio de simulaciones físicas a nivel de chip. Además, se analiza en distintas condiciones la capacidad en cortocircuito de dispositivos convencionalmente empleados en cocinas de inducción, como son los IGBTs, tratándose de encontrar el equilibrio entre un comportamiento robusto al tiempo que se mantienen bajas las pérdidas de potencia. Por otra parte, también se estudia la robustez y fiabilidad de varios GaN HEMT de 600- 650 V tanto de forma experimental como por medio de simulaciones físicas. Finalmente se aborda el cálculo de las pérdidas de potencia en convertidores de potencia resonantes empleando técnicas de termografía infrarroja. Por medio de esta técnica no solo es posible medir de forma precisa las diferentes contribuciones de las pérdidas, sino que también es posible apreciar cómo se distribuye la corriente a nivel de chip cuando, por ejemplo, el componente opera en modo de conmutación dura. Como resultado, se obtiene información relevante relacionada con modos de fallo. Además, también ha sido aprovechar las caracterizaciones realizadas para obtener un modelo térmico de simulación.This thesis is focused on addressing a more flexible, sustainable, efficient and reliable induction cooking approach from a power semiconductor device perspective. In this framework, this PhD Thesis has identified the following activities to cover such demands: In view of the growing interest for an effective power multiplexing in Induction Heating (IH) applications, improved and efficient Solid State Relays (SSRs) as an alternative to the electromechanical relays (EMRs) are deeply investigated. In this context, emerging Gallium Nitride (GaN) High‐Electron‐Mobility Transistors (GaN HEMTs) and Silicon Carbide (SiC) based devices are identified as potential candidates for the mentioned application, featuring several improved characteristics over EMRs. On the contrary, other solutions, which seemed to be very promising, resulted to suffer from anomalous behaviors; i.e. SJ MOSFETs are thoroughly analysed by electro‐thermal physical simulations at the device level. Additionally, the Short Circuit (SC) capability of power semiconductor devices employed or with potential to be used in IH appliances is also analysed. On the one hand, conventional IGBTs SC behavior is evaluated under different test conditions so that to obtain the trade‐off between ruggedness and low power losses. Moreover, ruggedness and reliability of several normally‐off 600‐650 V GaN HEMTs are deeply investigated by experimentation and physics‐based simulation. Finally, power losses calculation at die‐level is performed for resonant power converters by means of using Infrared Thermography (IRT). This method assists to determine, at the die‐level, the power losses and current distribution in IGBTs used in resonant soft‐switching power converters when functioning within or outside the Zero Voltage Switching (ZVS) condition. As a result, relevant information is obtained related to decreasing the power losses during commutation in the final application, and a thermal model is extracted for simulation purposes.<br /

    Multi-Output Resonant Power Converters for Domestic Induction Heating

    Get PDF
    Induction heating has become the most relevant domestic heating technology due to its accurate power control, clean operation and high efficiency. Current design tendencies aim to reduce limitations in pot positioning to increase the cooktop versatility and to improve the user experience. These desired flexible surfaces are implemented by means of multi-coil structures which require the design of new multi-output power converters. This paper reviews and classifies the different inverters proposed in the literature to power multi-coil structures, and analyzes them in terms of versatility, performance, and component count

    Power factor correction stage and matrix zero voltage switching resonant inverter for domestic induction heating appliances

    Get PDF
    The technology of flexible cooking surfaces applied to domestic induction heating (IH) appliances offers several advantages that improve the experience of the users, not only because the safety or cleanness, but also due to the fast heating and flexibility. These cooktops have more challenging design requirements because of different mains connections, efficiency requirements, electromagnetic compatibility (EMC) standards, control complexity, and cost. In previous works, the use of a front-end power factor corrector (PFC) rectifier has been proposed to overcome these restrictions. In order to get a cost-effective implementation, this paper proposes the use of a front-end PFC stage and a matrix resonant inverter, which features zero voltage switching (ZVS), to achieve a reduced number of power devices, and get a high performance and reduced power losses in the converter. Finally, an experimental prototype with four outputs of 3.6 kW has been implemented to prove the feasibility of this proposal

    Multiple-Output ZVS Resonant Inverter Architecture for Flexible Induction Heating Appliances

    Get PDF
    Flexible cooking surfaces have changed the domestic induction heating product paradigm enabling the use of a wider range of cookware materials, shapes, and positions. In order to implement such systems, multiple-output resonant inverters featuring high-performance and high-efficiency operation while achieving a cost-effective implementation are required. This paper proposes a multiple-output zero-voltage-switching resonant inverter for flexible induction heating appliances. The proposed converter features a matrix structure, enabling a cost-effective implementation with a reduced number of power devices while achieving high performance and low switching losses. It has been tested by means of an experimental prototype featuring 48 induction heating coils, proving the feasibility of the proposed approach

    Load Adaptive Modulation to Heat Non-Ferromagnetic Material

    Get PDF
    Department of Electrical EngineeringInduction heating (IH) cooktops are popular to heat various vessels fast and safely in the kitchen. Conventional IH cooktop system have been developed to heat the vessel of ferromagnetic materials. Because the vessel of non-ferromagnetic materials has low-resistance which induces large resonant current to power switches in series resonant IH inverters. Hence, the rated power cannot be transferred to the vessel due to overcurrent which is higher the rated switch current. In this thesis, a load adaptive modulation (LAM) method is proposed to heat the vessel of non-ferromagnetic and ferromagnetic materials in a single IH burner. The LAM can change the magnitude of the input voltage of the IH working coil and the operating frequency induced to the IH working coil according to the resistance of the vessel. The operational principle and the design method are analyzed to implement the proposed LAM and its power control. The validity of the design method and the control algorithm is experimentally verified using a 2 kW prototype series resonant full-bridge inverter with the IH working coil.ope

    Asymmetrical Noncomplementary Modulation Strategies for Independent Power Control in Multioutput Resonant Inverters

    Get PDF
    Domestic induction heating (IH) design trends aim at improving user experience by increasing the cooking surface flexibility while maintaining a cost-effective implementation. The design of multioutput topologies is a key development for this purpose. However, due to their complexity, output power control usually relies on low-frequency pulse density modulations that, in addition to the slow response due to significant power averaging times, present severe restrictions as a consequence of power pulsation regulations. This article proposes two different noncomplementary asymmetrical modulation strategies that allow continuous operation avoiding both flicker and heating performance issues and obtaining a fast-response load power control. In order to prove the feasibility of the proposed modulations, a prototype featuring 12 IH loads of 2000-W maximum rated power has been built, and both strategies have been tested

    Renewable Energy

    Get PDF
    Renewable Energy is energy generated from natural resources - such as sunlight, wind, rain, tides and geothermal heat - which are naturally replenished. In 2008, about 18% of global final energy consumption came from renewables, with 13% coming from traditional biomass, such as wood burning. Hydroelectricity was the next largest renewable source, providing 3% (15% of global electricity generation), followed by solar hot water/heating, which contributed with 1.3%. Modern technologies, such as geothermal energy, wind power, solar power, and ocean energy together provided some 0.8% of final energy consumption. The book provides a forum for dissemination and exchange of up - to - date scientific information on theoretical, generic and applied areas of knowledge. The topics deal with new devices and circuits for energy systems, photovoltaic and solar thermal, wind energy systems, tidal and wave energy, fuel cell systems, bio energy and geo-energy, sustainable energy resources and systems, energy storage systems, energy market management and economics, off-grid isolated energy systems, energy in transportation systems, energy resources for portable electronics, intelligent energy power transmission, distribution and inter - connectors, energy efficient utilization, environmental issues, energy harvesting, nanotechnology in energy, policy issues on renewable energy, building design, power electronics in energy conversion, new materials for energy resources, and RF and magnetic field energy devices

    The Commercial Application of Missile/Space Technology, Parts 1 and 2

    Get PDF
    This report is concerned with the transfer of technology from missile and space programs to non-missile/space applications in the United States. It presents the findings of a University of Denver Research Institute study sponsored by a National Aeronautics and Space Administration (NASA) grant awarded in November 1961. Initial stimulation for the unsolicited proposal leading to this study came from a 1960 Brookings Institution report to NASA, Proposed Studies on the Implications of Peaceful Space Activities for Human Affairs

    NASA Tech Briefs Index, 1977, volume 2, numbers 1-4

    Get PDF
    Announcements of new technology derived from the research and development activities of NASA are presented. Abstracts, and indexes for subject, personal author, originating center, and Tech Brief number are presented for 1977

    7th EEEIC International Workshop on Environment and Electrical Engineering : Wroclaw - Cottbus, 5 - 11. May 2008

    Get PDF
    The proposed solution meets the latest trends in world power engineering and has the lowest ecological costs amongst the accessible power engineering solutions. It is also in accordance with the Polish power engineering law, which takes into account the recommendations of the European Economic Commission, the Second Sulphur Protocol and the Framework Convention of the United Nations (concerning the changes of climate)
    corecore