22,641 research outputs found

    Modelling of oedemous limbs and venous ulcers using partial differential equations

    Get PDF
    BACKGROUND: Oedema, commonly known as tissue swelling, occurs mainly on the leg and the arm. The condition may be associated with a range of causes such as venous diseases, trauma, infection, joint disease and orthopaedic surgery. Oedema is caused by both lymphatic and chronic venous insufficiency, which leads to pooling of blood and fluid in the extremities. This results in swelling, mild redness and scaling of the skin, all of which can culminate in ulceration. METHODS: We present a method to model a wide variety of geometries of limbs affected by oedema and venous ulcers. The shape modelling is based on the PDE method where a set of boundary curves are extracted from 3D scan data and are utilised as boundary conditions to solve a PDE, which provides the geometry of an affected limb. For this work we utilise a mixture of fourth order and sixth order PDEs, the solutions of which enable us to obtain a good representative shape of the limb and associated ulcers in question. RESULTS: A series of examples are discussed demonstrating the capability of the method to produce good representative shapes of limbs by utilising a series of curves extracted from the scan data. In particular we show how the method could be used to model the shape of an arm and a leg with an associated ulcer. CONCLUSION: We show how PDE based shape modelling techniques can be utilised to generate a variety of limb shapes and associated ulcers by means of a series of curves extracted from scan data. We also discuss how the method could be used to manipulate a generic shape of a limb and an associated wound so that the model could be fine-tuned for a particular patient

    A survey of partial differential equations in geometric design

    Get PDF
    YesComputer aided geometric design is an area where the improvement of surface generation techniques is an everlasting demand since faster and more accurate geometric models are required. Traditional methods for generating surfaces were initially mainly based upon interpolation algorithms. Recently, partial differential equations (PDE) were introduced as a valuable tool for geometric modelling since they offer a number of features from which these areas can benefit. This work summarises the uses given to PDE surfaces as a surface generation technique togethe

    A class of high-order Runge-Kutta-Chebyshev stability polynomials

    Get PDF
    The analytic form of a new class of factorized Runge-Kutta-Chebyshev (FRKC) stability polynomials of arbitrary order NN is presented. Roots of FRKC stability polynomials of degree L=MNL=MN are used to construct explicit schemes comprising LL forward Euler stages with internal stability ensured through a sequencing algorithm which limits the internal amplification factors to āˆ¼L2\sim L^2. The associated stability domain scales as M2M^2 along the real axis. Marginally stable real-valued points on the interior of the stability domain are removed via a prescribed damping procedure. By construction, FRKC schemes meet all linear order conditions; for nonlinear problems at orders above 2, complex splitting or Butcher series composition methods are required. Linear order conditions of the FRKC stability polynomials are verified at orders 2, 4, and 6 in numerical experiments. Comparative studies with existing methods show the second-order unsplit FRKC2 scheme and higher order (4 and 6) split FRKCs schemes are efficient for large moderately stiff problems.Comment: 24 pages, 5 figures. Accepted for publication in Journal of Computational Physics, 22 Jul 2015. Revise

    A numerical magnetohydrodynamic scheme using the hydrostatic approximation

    Full text link
    In gravitationally stratified fluids, length scales are normally much greater in the horizontal direction than in the vertical one. When modelling these fluids it can be advantageous to use the hydrostatic approximation, which filters out vertically propagating sound waves and thus allows a greater timestep. We briefly review this approximation, which is commonplace in atmospheric physics, and compare it to other approximations used in astrophysics such as Boussinesq and anelastic, finding that it should be the best approximation to use in context such as radiative stellar zones, compact objects, stellar or planetary atmospheres and other contexts. We describe a finite-difference numerical scheme which uses this approximation, which includes magnetic fields.Comment: 15 pages, 18 figures, accepted for publication by MNRA

    MHD free convection-radiation interaction in a porous medium - part I : numerical investigation

    Get PDF
    A numerical investigation of two dimensional steady magnetohydrodynamics heat and mass transfer by laminar free convection from a radiative horizontal circular cylinder in a non-Darcy porous medium is presented by taking into account the Soret/Dufour effects. The boundary layer conservation equations, which are parabolic in nature, are normalized into non-similar form and then solved numerically with the well-tested, efficient, implicit, stable Kellerā€“Box finite-difference scheme. We use simple central difference derivatives and averages at the mid points of net rectangles to get finite difference equations with a second order truncation error. We have conducted a grid sensitivity and time calculation of the solution execution. Numerical results are obtained for the velocity, temperature and concentration distributions, as well as the local skin friction, Nusselt number and Sherwood number for several values of the parameters. The dependency of the thermophysical properties has been discussed on the parameters and shown graphically. The Darcy number accelerates the flow due to a corresponding rise in permeability of the regime and concomitant decrease in Darcian impedance. A comparative study between the previously published and present results in a limiting sense is found in an excellent agreement

    Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients

    Get PDF
    In the present paper, a two-dimensional solid consisting of a linear elastic isotropic material, for which the deformation energy depends on the second gradient of the displacement, is considered. The strain energy is demonstrated to depend on 6 constitutive parameters: the 2 LamĀ“e constants (Ī» and Ī¼) and 4 more parameters (instead of 5 as it is in the 3D-case). Analytical solutions for classical problems such as heavy sheet, bending and flexure are provided. The idea is very simple: The solutions of the corresponding problem of first gradient classical case are imposed, and the corresponding forces, double forces and wedge forces are found. On the basis of such solutions, a method is outlined, which is able to identify the six constitutive parameters. Ideal (or Gedanken) experiments are designed in order to write equations having as unknowns the six constants and as known terms the values of suitable experimental measurements

    Predicting multidimensional distributive properties of hyperbranched polymer resulting from AB2 polymerization with substitution, cyclization and shielding

    Full text link
    A deterministic mathematical model for the polymerization of hyperbranched molecules accounting for substitution, cyclization, and shielding effect has been developed as a system of nonlinear population balances. The solution obtained by a novel approximation method shows perfect agreement with the analytical solution in limiting cases and provides, for the first time in this class of polymerization problems, full multidimensional results.Comment: 38 pages, 22 figure
    • ā€¦
    corecore