9,938 research outputs found

    Environmental test chamber for the support of learning and teaching in intelligent control

    Get PDF
    The paper describes the utility of a low cost, 1 m2 by 2 m forced ventilation, micro-climate test chamber, for the support of research and teaching in mechatronics. Initially developed for the evaluation of a new ventilation rate controller, the fully instrumented chamber now provides numerous learning opportunities and individual projects for both undergraduate and postgraduate research students

    A Lifetime Prediction Method for LEDs Considering Real Mission Profiles

    Get PDF

    Usage and control of solid-state lighting for plant growth

    Get PDF
    The work begins with an introductory part in which the basic aspects related to the photosynthetic radiation, the photobiology of plants and the technology of light-emitting diodes (LEDs) are overviewed. It is followed by a review of related research works that have been conducted during the last two decades, and by the main design issues of LED luminaires for plant growth. The following part of the work reports the experimental growth tests performed. The effects of the radiation emitted by spectrally tailored LED luminaires on plant growth have been investigated. A total of four growth tests using lettuce and radish cultivars were performed. Two basic approaches were used to investigate the effects and the future possibilities of the usage of solid-state lighting (SSL) in plant growth. The first approach evaluates the growth development of lettuce plants in real greenhouse conditions using LEDs as supplementary light sources to natural daylight. In the second approach the evaluation was carried out with a total absence of natural daylight by growing lettuce and radish plants in phytotron-chamber conditions. The effects of SSL treatments on the growth development and quality of crops were compared with reference lighting systems composed of conventional and well-established light-source technologies, such as fluorescent and high-pressure sodium lamps. During the process of the investigation, the need to coherently quantify and evaluate the spectral quality of the radiation in terms of its photosynthetic appetence arose. Different metrics are still been used indiscriminately to quantify radiation used by plants to perform photosynthesis. Therefore, the existing metrics are discussed and a new proposal for coherent systematization is presented. The proposed system is referred to phyllophotometric and it is developed using the average photosynthetic spectral quantum yield response curve of plants. The results of the growth tests showed that the usage of SSL in plant growth offers an unprecedented possibility to optimise the morphogenesis, the photosynthesis and the nutritional quality of crops. This can be done by controlling the quantity and the spectral composition of the radiation provided, areas where LED-based luminaires excel. These possibilities can contribute to respond to the increasing demand for high-quality horticultural products by the consumers and to the conservation of global natural environment and resources

    Reliability evaluation of III-V concentrator solar cells

    Full text link
    Concentrator solar cells have been proposed as an interesting way of reducing the cost of photovoltaic electricity. However, in order to compete with conventional solar modules it is necessary not only to reduce costs but also to evaluate and increase the present reliability. Concentrator solar cells work at higher temperature, solar radiation and current stress than conventional solar cells and a carefully reliability analysis is needed. In this paper a reliability analysis procedure, that is being developed, is presented

    Development of effective thermal management strategies for LED luminaires

    Get PDF
    The efficacy, reliability and versatility of the light emitting diode (LED) can outcompete most established light source technologies. However, they are particularly sensitive to high temperatures, which compromises their efficacy and reliability, undermining some of the technology s key benefits. Consequently, effective thermal management is essential to exploit the technology to its full potential. Thermal management is a well-established subject but its application in the relatively new LED lighting industry, with its specific constraints, is currently poorly defined. The question this thesis aims to answer is how can LED thermal management be achieved most effectively? This thesis starts with a review of the current state of the art, relevant thermal management technologies and market trends. This establishes current and future thermal management constraints in a commercial context. Methods to test and evaluate the thermal management performance of a luminaire system follow. The defined test methods, simulation benchmarks and operational constraints provide the foundation to develop effective thermal management strategies. Finally this work explores how the findings can be implemented in the development and comparison of multiple thermal management designs. These are optimised to assess the potential performance enhancement available when applied to a typical commercial system. The outcomes of this research showed that thermal management of LEDs can be expected to remain a key requirement but there are hints it is becoming less critical. The impacts of some common operating environments were studied, but appeared to have no significant effect on the thermal behaviour of a typical system. There are some active thermal management devices that warrant further attention, but passive systems are inherently well suited to LED luminaires and are readily adopted so were selected as the focus of this research. Using the techniques discussed in this thesis the performance of a commercially available component was evaluated. By optimising its geometry, a 5 % decrease in absolute thermal resistance or a 20 % increase in average heat transfer coefficient and 10 % reduction in heatsink mass can potentially be achieved . While greater lifecycle energy consumption savings were offered by minimising heatsink thermal resistance the most effective design was considered to be one optimised for maximum average heat transfer coefficient. Some more radical concepts were also considered. While these demonstrate the feasibility of passively manipulating fluid flow they had a detrimental impact on performance. Further analysis would be needed to conclusively dismiss these concepts but this work indicates there is very little potential in pursuing them further

    Thermal characterization and optical reliability investigation of high-power white leds

    Get PDF
    The LED technology has fatly been developed in the last decade, but there is the need to provide detailed investigations about the dynamics of the optical power and light quality after several hours of operation. Three different LED devices were studied, and a stress at high current injection were performed. The results highlight the efficacy increase in two cases, and the creation of nonradiative centers in the latte

    Reduction of Thermal Resistance and Optical Power Loss Using Thin-Film Light-Emitting Diode (LED) Structure

    Get PDF
    In this paper, a GaN-LED with sapphire structure and a thin-film LED without sapphire structure are characterized in the photo-electro-thermal (PET) modeling framework for comparison. Starting from the analysis and modeling of internal quantum efficiency as a function of current and temperature of blue LED, this work develops the thin-film LED device model and derives its optical power and the heat dissipation coefficient. The device parameters of the two LED devices with different structural designs are then compared. Practical optical power measurements are compared with theoretical predictions based on the two types of fabricated devices. It is shown that the thin-film LED device has much lower thermal resistance and optical power loss.published_or_final_versio

    DESIGN AND RELIABILITY ASSESSMENT OF HIGH POWER LED AND LED-BASED SOLID STATE LIGHTING

    Get PDF
    Lumen depreciation and color quality change of high power LED-based solid state light (SSL) are caused by the combination of various degradation mechanisms. The analytical/experimental models on the system as well as component-level are proposed to analyze the complex reliability issues of the LED-based solid SSL. On the system-level front, a systematic approach to define optimum design domains of LED-based SSL for a given light output requirement is developed first by taking cost, energy consumption and reliability into consideration. Three required data sets (lumen/LED, luminaire efficacy, and L70 lifetime) to define design domains are expressed as contour maps in terms of two most critical operating parameters: the forward current and the junction temperature (If and Tj). Then, the available domain of design solutions is defined as a common area that satisfies all the requirements of a luminaire. Secondly, a physic of failure (PoF) based hierarchical model is proposed to estimate the lifetime of the LED-based SSL. The model is implemented successfully for an LED-based SSL cooled by a synthetic jet, where the lifetime of a prototypical luminaire is predicted from LED lifetime data using the degradation analyses of the synthetic jet and the power electronics. On the component-level front, a mathematical model and an experimental procedure are developed to analyze the degradation mechanisms of high power LEDs. In the approach, the change in the spectral power distribution (SPD) caused by the LED degradation is decomposed into the contributions of individual degradation mechanisms so that the effect of each degradation mechanism on the final LED degradation is quantified. It is accomplished by precise deconvolution of the SPD into the leaked blue light and the phosphor converted light. The model is implemented using the SPDs of a warm white LED with conformally-coated phosphor, obtained before and after 9,000 hours of operation. The analysis quantifies the effect of each degradation mechanism on the final values of lumen, CCT and CRI

    Characterization, Modeling and Analysis of Organic Light-Emitting Diodes With Different Structures

    Get PDF
    This paper demonstrates that organic light-emitting diodes (OLED) of different structures can characterized and modeled using a combination of the photo-electro-thermal (PET) theory and spectral power distribution modeling. The photometric, electrical, thermal and chromatic properties of OLED devices are incorporated into a model framework so that the performance of OLED of different structures can be compared. A concept of luminance uniformity over the OLED surfaces is also introduced for comparing OLED with large surface areas. Experimental results are included to verify the OLED models and compare the characteristics of two different OLED samples. Based on the same PET framework, some differences of OLEDs and inorganic LEDs are addressed and discussed.published_or_final_versio
    • …
    corecore