50 research outputs found

    Solder joint failures under thermo-mechanical loading conditions – a review

    Get PDF
    Solder joints play a critical role in electronic devices by providing electrical, mechanical and thermal interconnections. These miniature joints are also the weakest links in an electronic device. Under severe thermal and mechanical loadings, solder joints could fail in ‘tensile fracture’ due to stress overloading, ‘fatigue failure’ because of the application of cyclical stress and ‘creep failure’ due to a permanent long-term load. This paper reviews the literature on solder joint failures under thermo-mechanical loading conditions, with a particular emphasis on fatigue and creep failures. Literature reviews mainly focused on commonly used lead-free Sn-Ag-Cu (SAC) solders. Based on the literature in experimental and simulation studies on solder joints, it was found that fatigue failures are widely induced by accelerated thermal cycling (ATC). During ATC, the mismatch in coefficients of thermal expansion (CTE) between different elements of electronics assembly contributes significantly to induce thermal stresses on solder joints. The fatigue life of solder joints is predicted based on phenomenological fatigue models that utilise materials properties as inputs. A comparative study of 14 different fatigue life prediction models is presented with their relative advantages, scope and limitations. Creep failures in solder joints, on the other hand, are commonly induced through isothermal ageing. A critical review of various creep models is presented. Many of these strain rate-based creep models are routed to a very well-known Anand Model of inelastic strain rate. Finally, the paper outlined the combined effect of creep and fatigue on solder joint failure.N/

    Dynamic Mechanical and Failure Properties of Solder Joints

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    A Finite Element approach to understanding constitutive elasto-plastic, visco-plastic behaviour in lead free micro-electronic BGA structures

    Get PDF
    This work investigates the non-linear elasto-plastic and visco-plastic behaviour of lead free solder material and soldered joints. Specifically, Finite Element (FE) tools were used to better understand the deformations within Ball Grid Array solder joints (BGA), and numerical and analytical methods were developed to quantify the identified constituent deformations. FE material models were based on the same empirical constitutive models (elastic, plastic and creep) used in analytical calculations. The current work recognises the large number of factors influencing material behaviour which has led to a wide range of published material properties for near eutectic SnAgCu alloys. The work discovered that the deformation within the BGA was more complex than is generally assumed in the literature. It was shown that shear deformation of the solder ball could account for less than 5% of total measured displacement in BGA samples. Shear displacement and rotation of the solder balls relative to the substrate are sensitive to the substrate orthotropic properties and substrate geometry (relative to solder volume and array pattern). The FE modelling was used to derive orthotropic FR4 properties independently using published data. An elastic modulus for Sn3.8Ag0.7Cu was measured using homologous temperatures below 0.3. Suggested values of Abaqus-specific creep parameters m and f (not found in literature) for Sn3.8Ag0.7Cu have been validated with published data. Basic verification against simple analytical calculations has given a better understanding of the components of overall specimen displacement that is normally missing from empirical validation alone. A combined approach of numerical and analytical modelling of BGAs, and mechanical tests, is recommended to harmonise published work, exploit new material data and for more informed analysis of new configurationsEPSRC-funded PhD studentshi

    Journal of Telecommunications and Information Technology, 2005, nr 1

    Get PDF
    corecore