9 research outputs found

    Peridynamic Analysis of Rail Squats

    Get PDF
    Rail surface defects are a serious concern for railway infrastructure managers all around the world. They lead to poor ride quality due to excess vibration and noise; in rare cases, they can result in a broken rail and a train derailment. Defects are typically classified as ‘rail studs’ when they initiate from the white etching layer, and ‘rail squats’ when they initiate from rolling contact fatigue. This paper presents a novel investigation into rail squat initiation and growth simulations using peridynamic theory. To the best of the authors’ knowledge, no other comprehensive study of rail squats has been carried out using this approach. Peridynamics are well-suited for fracture problems, because, contrary to continuum mechanics, they do not use partial-differential equations. Instead, peridynamics use integral equations that are defined even when discontinuities (cracks, etc.) are present in the displacement field. In this study, a novel application of peridynamics to rail squats is verified against a finite element solution, and the obtained simulation results are compared with in situ rail squat measurements. Some new insights can be drawn from the results. The outcome exhibits that the simulated cracks initiate and grow unsymmetrically, as expected and reported in the field. Based on this new insight, it is apparent that peridynamic modelling is well-applicable to fatigue crack modeling in rails. Surprisingly, limitations to the peridynamic analysis code have also been discovered. Future work requires finding an adequate solution to the matter-interpenetration problem

    Discontinuous mechanical problems studied with a Peridynamics-based approach

    Get PDF
    The classical theory of solid mechanics is rooted in the assumption of a continuous distribution of mass within a body. It employs partial differential equations (PDEs) with significant smoothness to obtain displacements and internal forces of the body. Although classical theory has been applied to wide range of engineering problems, PDEs of the classical theory cannot be applied directly on a discontinuity such as cracks. Peridynamics is considered to be an alternative and promising nonlocal theory of solid mechanics that, by replacing PDEs of classical theory with integral or integro-differential equations, attempts to unite the mathematical modelling of continuous media, cracks and particles within a single framework. Indeed, the equations of peridynamic are based on the direct interaction of material points over finite distances. Another concept, derived from the peridynamic approach to cope with engineering problems with discontinuities, is that of the peridynamic differential operator (PDDO). The PDDO uses the non-local interaction of the material points in a way similar to that of peridynamics. PDDO is capable to recast partial derivatives of a function through a nonlocal integral operator whose kernel is free of using any correction function. In this dissertation, application of peridaynamics and PDDO, to three different important engineering problems including fatigue fracture, thermo-mechanics and sloshing phenomena, is examined comprehensively. To cope with fatigue fracture problems, an algorithm has been developed in such a way that the increment of damage due to fatigue is added to that due to the static increment of the opening displacement. A one degree of freedom cylinder model has been used to carry out an efficient comparison of the computational performance of three fatigue degradation strategies. The three laws have been implemented in a code using bond based peridynamics (BBPD) to simulate fatigue crack propagation. Both the cylinder model and the bond base peridynamics code provide the same assessment of the three fatigue degradation strategies. To deal with thermo-mechanical problems, an effective way is proposed to use a variable grid size in a weakly coupled thermal shock peridynamic model. The proposed numerical method is equipped with stretch control criterion to transform the grid discretization adaptively in time. Hence, finer grid spacing is only applied in limited zones where it is required. This method is capable of predicting complex crack patterns in the model. By introducing fine grid discretization over the boundaries of the model the surface (softening) effect can be reduced. The accuracy and performance of the model are examined through problems such as thermo-elastic and thermal-shock induced fracture in ceramics. Finally to investigate sloshing phenomena, the PDDO has been applied to the solution of problems of liquid sloshing in 2D and 3D tanks with potential flow theory and Lagrangian description. Moreover, liquid sloshing in rectangular tanks containing horizontal and vertical baffles are investigated to examine the robustness and accuracy of PDDO. With respect to other approaches such as meshless local Petrov-Galerkin (MLPG), volume of fluid (VOF) and and local polynomial collocation methods the examples are solved with a coarser grid of nodes. Using this new approach, one is able to obtain results with a high accuracy and low computational cost

    Numerical modelling of additive manufacturing process for stainless steel tension testing samples

    Get PDF
    Nowadays additive manufacturing (AM) technologies including 3D printing grow rapidly and they are expected to replace conventional subtractive manufacturing technologies to some extents. During a selective laser melting (SLM) process as one of popular AM technologies for metals, large amount of heats is required to melt metal powders, and this leads to distortions and/or shrinkages of additively manufactured parts. It is useful to predict the 3D printed parts to control unwanted distortions and shrinkages before their 3D printing. This study develops a two-phase numerical modelling and simulation process of AM process for 17-4PH stainless steel and it considers the importance of post-processing and the need for calibration to achieve a high-quality printing at the end. By using this proposed AM modelling and simulation process, optimal process parameters, material properties, and topology can be obtained to ensure a part 3D printed successfully

    Study of photovoltaic (PV) module interconnections failure analysis and reliability

    Get PDF
    A thesis submitted in partial fulfilment of the requirements of the University of Wolverhampton for the award of Doctor of Philosophy.Solar Energy is one of the most widely used renewable energy sources, with the solar Photovoltaic (PV) module technologies deployed as one of the primary renewable energy sources to replace fossil fuels. However, the R&D challenge for improving the performance and reliability of PV modules has become an urgent and critical agenda for the energy generation industry sector. The interconnection between the solar PV cells is a very important part of the PV module assembly, and its failure can adversely affect the performance and reliability of the PV module. The interconnection failure has been mostly linked to the crack initiation and propagation in the solder joints used to connect the ribbon interconnection to the cell. This research focuses on the study of the thermal failure of PV module solder joint to determine the optimum ribbon interconnection designs that will give improved thermo-mechanical reliability. It develops a virtual reliability qualification process for the assessment of the life expectancy of PV module interconnections. The FEM simulations in ABAQUS 2019 software are implemented to investigate failure of the solder joints in different ribbon interconnection designs under anticipated life cycle loading conditions and high temperature lamination process. For the first time, the extended finite element method (XFEM) technique is used to determine the crack initiation temperature, crack location, direction and growth rate in solder joint of PV module interconnection under lamination process. Furthermore, the research used the Developed Morrow Energy Density lifetime model to determine the number of cycles to creep-fatigue failure, and then it defined a new generic exponent factor using the Coffin–Manson–Arrhenius model to estimate the lifetime for the designs under different thermal cycling conditions. The research also combines the numerical results of XFEM and creep-fatigue investigation to determine the failure lifetime of PV Module interconnection designs. The results show that the Multi-Busbar interconnection design improves solder joint creep-fatigue life (up to 15%) and consequently provides higher thermo-mechanical reliability for the solar PV modules compared to other studied designs (Conventional and the Light Capturing Ribbon interconnections). The results of this PV module interconnections study can be used for evaluating potential design changes and to facilitate design for reliability validation of different configurations for improving the long-term PV module system reliability.Faculty of Science and Engineering, University of Wolverhampton

    A new mixed model based on the enhanced-Refined Zigzag Theory for the analysis of thick multilayered composite plates

    Get PDF
    The Refined Zigzag Theory (RZT) has been widely used in the numerical analysis of multilayered and sandwich plates in the last decay. It has been demonstrated its high accuracy in predicting global quantities, such as maximum displacement, frequencies and buckling loads, and local quantities such as through-the-thickness distribution of displacements and in-plane stresses [1,2]. Moreover, the C0 continuity conditions make this theory appealing to finite element formulations [3]. The standard RZT, due to the derivation of the zigzag functions, cannot be used to investigate the structural behaviour of angle-ply laminated plates. This drawback has been recently solved by introducing a new set of generalized zigzag functions that allow the coupling effect between the local contribution of the zigzag displacements [4]. The newly developed theory has been named enhanced Refined Zigzag Theory (en- RZT) and has been demonstrated to be very accurate in the prediction of displacements, frequencies, buckling loads and stresses. The predictive capabilities of standard RZT for transverse shear stress distributions can be improved using the Reissner’s Mixed Variational Theorem (RMVT). In the mixed RZT, named RZT(m) [5], the assumed transverse shear stresses are derived from the integration of local three-dimensional equilibrium equations. Following the variational statement described by Auricchio and Sacco [6], the purpose of this work is to implement a mixed variational formulation for the en-RZT, in order to improve the accuracy of the predicted transverse stress distributions. The assumed kinematic field is cubic for the in-plane displacements and parabolic for the transverse one. Using an appropriate procedure enforcing the transverse shear stresses null on both the top and bottom surface, a new set of enhanced piecewise cubic zigzag functions are obtained. The transverse normal stress is assumed as a smeared cubic function along the laminate thickness. The assumed transverse shear stresses profile is derived from the integration of local three-dimensional equilibrium equations. The variational functional is the sum of three contributions: (1) one related to the membrane-bending deformation with a full displacement formulation, (2) the Hellinger-Reissner functional for the transverse normal and shear terms and (3) a penalty functional adopted to enforce the compatibility between the strains coming from the displacement field and new “strain” independent variables. The entire formulation is developed and the governing equations are derived for cases with existing analytical solutions. Finally, to assess the proposed model’s predictive capabilities, results are compared with an exact three-dimensional solution, when available, or high-fidelity finite elements 3D models. References: [1] Tessler A, Di Sciuva M, Gherlone M. Refined Zigzag Theory for Laminated Composite and Sandwich Plates. NASA/TP- 2009-215561 2009:1–53. [2] Iurlaro L, Gherlone M, Di Sciuva M, Tessler A. Assessment of the Refined Zigzag Theory for bending, vibration, and buckling of sandwich plates: a comparative study of different theories. Composite Structures 2013;106:777–92. https://doi.org/10.1016/j.compstruct.2013.07.019. [3] Di Sciuva M, Gherlone M, Iurlaro L, Tessler A. A class of higher-order C0 composite and sandwich beam elements based on the Refined Zigzag Theory. Composite Structures 2015;132:784–803. https://doi.org/10.1016/j.compstruct.2015.06.071. [4] Sorrenti M, Di Sciuva M. An enhancement of the warping shear functions of Refined Zigzag Theory. Journal of Applied Mechanics 2021;88:7. https://doi.org/10.1115/1.4050908. [5] Iurlaro L, Gherlone M, Di Sciuva M, Tessler A. A Multi-scale Refined Zigzag Theory for Multilayered Composite and Sandwich Plates with Improved Transverse Shear Stresses, Ibiza, Spain: 2013. [6] Auricchio F, Sacco E. Refined First-Order Shear Deformation Theory Models for Composite Laminates. J Appl Mech 2003;70:381–90. https://doi.org/10.1115/1.1572901
    corecore