59,234 research outputs found

    Atomic physics and modern solar spectro-polarimetry

    Full text link
    Observational solar physics is entering a new era with the advent of new 1.5 m class telescopes with adaptive optics, as well as the Daniel K. Inouye 4 m telescope which will become operational in 2019. Major outstanding problems in solar physics all relate to the solar magnetic field. Spectropolarimetry offers the best, and sometimes only, method for accurate measurements of the magnetic field. In this paper we highlight how certain atomic transitions can help us provide both calibration data, as well as diagnostic information on solar magnetic fields, in the presence of residual image distortions through the atmosphere close to, but not at the diffraction limits of large and polarizing telescopes. Particularly useful are spectral lines of neutrals and singly charged ions of iron and other complex atoms. As a proof-of-concept, we explore atomic transitions that might be used to study magnetic fields without the need for an explicit calibration sequence, offering practical solutions to the difficult challenges of calibrating the next generation of solar spectropolarimetric telescopes. Suggestions for additional work on atomic theory and measurements, particularly at infrared wavelengths, are given. There is some promise for continued symbiotic advances between solar physics and atomic physics.Comment: Can. J. Phys., in pres

    Instrument and data analysis challenges for imaging spectropolarimetry

    Full text link
    The next generation of solar telescopes will enable us to resolve the fundamental scales of the solar atmosphere, i.e., the pressure scale height and the photon mean free path. High-resolution observations of small-scale structures with sizes down to 50 km require complex post-focus instruments, which employ adaptive optics (AO) and benefit from advanced image restoration techniques. The GREGOR Fabry-Perot Interferometer (GFPI) will serve as an example of such an instrument to illustrate the challenges that are to be expected in instrumentation and data analysis with the next generation of solar telescopes.Comment: 4 pages, 1 figure, accepted for publication in Astronomische Nachrichten/AN, special issue of the 1st EAST-ATST Workshop: "Science with large solar telescopes" in Freiburg, Germany, October 14-16, 200

    Was the GLE on May 17, 2012 linked with the M5.1-class flare the first in the 24th solar cycle?

    Full text link
    On May 17, 2012 an M5.1-class flare exploded from the sun. An O-type coronal mass ejection (CME) was also associated with this flare. There was an instant increase in proton flux with peak at ≥100\geq 100 MeV, leading to S2 solar radiation storm level. In about 20 minutes after the X-ray emission, the solar particles reached the Earth.It was the source of the first (since December 2006) ground level enhancement (GLE) of the current solar cycle 24. The GLE was detected by neutron monitors (NM) and other ground based detectors. Here we present an observation by the Tupi muon telescopes (Niteroi, Brazil, 220.9S22^{0}.9 S, 430.2W43^{0}.2 W, 3 m above sea level) of the enhancement of muons at ground level associated with this M5.1-class solar flare. The Tupi telescopes registered a muon excess over background ∼20%\sim 20\% in the 5-min binning time profile. The Tupi signal is studied in correlation with data obtained by space-borne detectors (GOES, ACE), ground based neutron monitors (Oulu) and air shower detectors (the IceTop surface component of the IceCube neutrino observatory). We also report the observation of the muon signal possibly associated with the CME/sheath striking the Earth magnetosphere on May 20, 2012. We show that the observed temporal correlation of the muon excess observed by the Tupi muon telescopes with solar transient events suggests a real physical connection between them. Our observation indicates that combination of two factors, the low energy threshold of the Tupi muon telescopes and the location of the Tupi experiment in the South Atlantic Anomaly region, can be favorable in the study and detection of the solar transient events. Our experiment provides new data complementary to other techniques (space and ground based) in the study of solar physics.Comment: 9 pages, 10 figure

    High Resolution Observations using Adaptive Optics: Achievements and Future Needs

    Full text link
    Over the last few years, several interesting observations were obtained with the help of solar Adaptive Optics (AO). In this paper, few observations made using the solar AO are enlightened and briefly discussed. A list of disadvantages with the current AO system are presented. With telescopes larger than 1.5m are expected during the next decade, there is a need to develop the existing AO technologies for large aperture telescopes. Some aspects of this development are highlighted. Finally, the recent AO developments in India are also presented

    IR spectroscopy of COmosphere dynamics with the CO first overtone band

    Full text link
    We discuss observations of the weak first overtone CO absorption band near 2300 nm with the U.S. National Solar Observatory Array Camera (NAC), a modern mid-infrared detector. This molecular band provides a thermal diagnostic that forms lower in the atmosphere than the stronger fundamental band near 4600 nm. The observed center-to-limb increase in CO line width qualitatively agrees with the proposed higher temperature shocks or faster plasma motions higher in the COmosphere. The spatial extent of chromospheric shock waves is currently at or below the diffraction limit of the available C0 lines at existing telescopes. Five minute period oscillations in line strength and measured Doppler shifts are consistent with the p-mode excitation of the photospheric gas. We also show recent efforts at direct imaging at 4600 nm. We stress that future large-aperture solar telescopes must be teamed with improved, dynamic mid-infrared instruments, like the NAC, to capitalize on the features that motivate such facilities.Comment: 4 pages, 3 figures, Published in Astronomische Nachrichten on behalf of the 1st EAST-ATST Workshop: "Science with Large Solar Telescopes

    Telescopes and space exploration

    Get PDF
    The necessity for different types of telescopes for astronomical investigations is discussed. Major findings in modern astronomy by ground-based and spaceborne telescopes are presented. Observations of the Crab Nebula, solar flares, interstellar gas, and the Black Hole are described. The theory of the oscillating universe is explored. Operating and planned telescopes are described

    Correcting for the solar wind in pulsar timing observations: the role of simultaneous a nd l ow-frequency observations

    Full text link
    The primary goal of the pulsar timing array projects is to detect ultra-low-frequency gravitational waves. The pulsar data sets are affected by numerous noise processes including varying dispersive delays in the interstellar medium and from the solar wind. The solar wind can lead to rapidly changing variations that, with existing telescopes, can be hard to measure and then remove. In this paper we study the possibility of using a low frequency telescope to aid in such correction for the Parkes Pulsar Timing Array (PPTA) and also discuss whether the ultra-wide-bandwidth receiver for the FAST telescope is sufficient to model the solar wind variations. Our key result is that a single wide-bandwidth receiver can be used to model and remove the effect of the solar wind. However, for pulsars that pass close to the Sun such as PSR J1022+1022, the solar wind is so variable that observations at two telescopes separated by a day are insufficient to correct the solar wind effect.Comment: accepted by RA

    Future prospects for gamma-ray

    Get PDF
    Astrophysical phenomena discussed are: the very energetic and nuclear processes associated with compact objects; astrophysical nucleo-synthesis; solar particle acceleration; the chemical composition of the planets and other bodies of the solar system; the structure of our galaxy; the origin and dynamic pressure effects of the cosmic rays; the high energy particles and energetic processes in other galaxies, especially active ones; and the degree of matter antimater symmetry of the universe. The gamma ray results of GAMMA-I, the gamma ray observatory, the gamma ray burst network, solar polar, and very high energy gamma ray telescopes on the ground provide justification for more sophisticated telescopes

    JPEG2000 Image Compression on Solar EUV Images

    Get PDF
    For future solar missions as well as ground-based telescopes, efficient ways to return and process data have become increasingly important. Solar Orbiter, e.g., which is the next ESA/NASA mission to explore the Sun and the heliosphere, is a deep-space mission, which implies a limited telemetry rate that makes efficient onboard data compression a necessity to achieve the mission science goals. Missions like the Solar Dynamics Observatory (SDO) and future ground-based telescopes such as the Daniel K. Inouye Solar Telescope, on the other hand, face the challenge of making petabyte-sized solar data archives accessible to the solar community. New image compression standards address these challenges by implementing efficient and flexible compression algorithms that can be tailored to user requirements. We analyse solar images from the Atmospheric Imaging Assembly (AIA) instrument onboard SDO to study the effect of lossy JPEG2000 (from the Joint Photographic Experts Group 2000) image compression at different bit rates. To assess the quality of compressed images, we use the mean structural similarity (MSSIM) index as well as the widely used peak signal-to-noise ratio (PSNR) as metrics and compare the two in the context of solar EUV images. In addition, we perform tests to validate the scientific use of the lossily compressed images by analysing examples of an on-disk and off-limb coronal-loop oscillation time-series observed by AIA/SDO.Comment: 25 pages, published in Solar Physic

    Helioseismology, solar models and solar neutrinos

    Get PDF
    We review recent advances concerning helioseismology, solar models and solar neutrinos. Particularly we shall address the following points: i) helioseismic tests of recent SSMs; ii)the accuracy of the helioseismic determination of the sound speed near the solar center; iii)predictions of neutrino fluxes based on helioseismology, (almost) independent of SSMs; iv)helioseismic tests of exotic solar models.Comment: 11 pages with 6 ps figures included, procsla style, based on the talks presented at Neutrino Telescopes '99, Venice, February 1999, and at Valencia '99, Valencia, May 1999, to appear in the proceeding
    • …
    corecore