985 research outputs found

    A Review of Classification Problems and Algorithms in Renewable Energy Applications

    Get PDF
    Classification problems and their corresponding solving approaches constitute one of the fields of machine learning. The application of classification schemes in Renewable Energy (RE) has gained significant attention in the last few years, contributing to the deployment, management and optimization of RE systems. The main objective of this paper is to review the most important classification algorithms applied to RE problems, including both classical and novel algorithms. The paper also provides a comprehensive literature review and discussion on different classification techniques in specific RE problems, including wind speed/power prediction, fault diagnosis in RE systems, power quality disturbance classification and other applications in alternative RE systems. In this way, the paper describes classification techniques and metrics applied to RE problems, thus being useful both for researchers dealing with this kind of problem and for practitioners of the field

    The Challenge of Machine Learning in Space Weather Nowcasting and Forecasting

    Get PDF
    The numerous recent breakthroughs in machine learning (ML) make imperative to carefully ponder how the scientific community can benefit from a technology that, although not necessarily new, is today living its golden age. This Grand Challenge review paper is focused on the present and future role of machine learning in space weather. The purpose is twofold. On one hand, we will discuss previous works that use ML for space weather forecasting, focusing in particular on the few areas that have seen most activity: the forecasting of geomagnetic indices, of relativistic electrons at geosynchronous orbits, of solar flares occurrence, of coronal mass ejection propagation time, and of solar wind speed. On the other hand, this paper serves as a gentle introduction to the field of machine learning tailored to the space weather community and as a pointer to a number of open challenges that we believe the community should undertake in the next decade. The recurring themes throughout the review are the need to shift our forecasting paradigm to a probabilistic approach focused on the reliable assessment of uncertainties, and the combination of physics-based and machine learning approaches, known as gray-box.Comment: under revie

    Damage identification in structural health monitoring: a brief review from its implementation to the Use of data-driven applications

    Get PDF
    The damage identification process provides relevant information about the current state of a structure under inspection, and it can be approached from two different points of view. The first approach uses data-driven algorithms, which are usually associated with the collection of data using sensors. Data are subsequently processed and analyzed. The second approach uses models to analyze information about the structure. In the latter case, the overall performance of the approach is associated with the accuracy of the model and the information that is used to define it. Although both approaches are widely used, data-driven algorithms are preferred in most cases because they afford the ability to analyze data acquired from sensors and to provide a real-time solution for decision making; however, these approaches involve high-performance processors due to the high computational cost. As a contribution to the researchers working with data-driven algorithms and applications, this work presents a brief review of data-driven algorithms for damage identification in structural health-monitoring applications. This review covers damage detection, localization, classification, extension, and prognosis, as well as the development of smart structures. The literature is systematically reviewed according to the natural steps of a structural health-monitoring system. This review also includes information on the types of sensors used as well as on the development of data-driven algorithms for damage identification.Peer ReviewedPostprint (published version

    Selection of the Best Optimal Operational Parameters to Reduce the Fuel Consumption Based on the Clustering Method of Artificial Neural Networks

    Get PDF
    The international shipping transportation industry becomes gradually important in the field of national economic development. It is explained by means of an increase in a number of ships nowadays, and it also expands the operating routes on international routes including the North of America, Baltic Sea, and emission control areas (ECAs). The energy efficiency of ships is very necessary to respond to the regulations of the International Maritime Organization (IMO). Moreover, the operational parameters have a significant meaning in supervising and monitoring the engines on a ship. They completely depend on the navigation environment condition. So, selecting the optimal operational parameters’ component is a target of this study. In this chapter, a study on the energy efficiency of ship by decreasing the fuel consumption of the main engine for a certain ship namely M/V NSU JUSTICE 250,000 DWT of VINIC shipping transportation company in Vietnam is by the method of artificial neural networks (ANNs). In particular, these studies were conducted by the classification and clustering method of artificial neural networks (ANNs) based on the experimental database of M/V NSU JUSTICE 250,000 DWT. The results of this chapter will solve the energy efficiency issue on ships nowadays and contribute the aims in the next studies

    Computational Intelligence for classification and forecasting of solar photovoltaic energy production and energy consumption in buildings

    Get PDF
    This thesis presents a few novel applications of Computational Intelligence techniques in the field of energy-related problems. More in detail, we refer to the assessment of the energy produced by a solar photovoltaic installation and to the evaluation of building’s energy consumptions. In fact, recently, thanks also to the growing evolution of technologies, the energy sector has drawn the attention of the research community in proposing useful tools to deal with issues of energy efficiency in buildings and with solar energy production management. Thus, we will address two kinds of problem. The first problem is related to the efficient management of solar photovoltaic energy installations, e.g., for efficiently monitoring the performance as well as for finding faults, or for planning the energy distribution in the electrical grid. This problem was faced with two different approaches: a forecasting approach and a fuzzy classification approach for energy production estimation, starting from some knowledge about environmental variables. The forecasting system developed is able to reproduce the instantaneous curve of daily energy produced by the solar panels of the installation, with a forecasting horizon of one day. It combines neural networks and time series analysis models. The fuzzy classification system, rather, extracts some linguistic knowledge about the amount of energy produced by the installation, exploiting an optimal fuzzy rule base and genetic algorithms. The developed model is the result of a novel hierarchical methodology for building fuzzy systems, which may be applied in several areas. The second problem is related to energy efficiency in buildings, for cost reduction and load scheduling purposes, and was tackled by proposing a forecasting system of energy consumption in office buildings. The proposed system exploits a neural network to estimate the energy consumption due to lighting on a time interval of a few hours, starting from considerations on available natural daylight

    Unsupervised clustering of IoT signals through feature extraction and self organizing maps

    Get PDF
    This thesis scope is to build a clustering model to inspect the structural properties of a dataset composed of IoT signals and to classify these through unsupervised clustering algorithms. To this end, a feature-based representation of the signals is used. Different feature selection algorithms are then used to obtain reduced feature spaces, so as to decrease the computational cost and the memory demand. Thus, the IoT signals are clustered using Self-Organizing Maps (SOM) and then evaluatedope

    A Deterministic Self-Organizing Map Approach and its Application on Satellite Data based Cloud Type Classification

    Get PDF
    A self-organizing map (SOM) is a type of competitive artificial neural network, which projects the high dimensional input space of the training samples into a low dimensional space with the topology relations preserved. This makes SOMs supportive of organizing and visualizing complex data sets and have been pervasively used among numerous disciplines with different applications. Notwithstanding its wide applications, the self-organizing map is perplexed by its inherent randomness, which produces dissimilar SOM patterns even when being trained on identical training samples with the same parameters every time, and thus causes usability concerns for other domain practitioners and precludes more potential users from exploring SOM based applications in a broader spectrum. Motivated by this practical concern, we propose a deterministic approach as a supplement to the standard self-organizing map. In accordance with the theoretical design, the experimental results with satellite cloud data demonstrate the effective and efficient organization as well as simplification capabilities of the proposed approach
    corecore