1,124 research outputs found

    Simulation of site-specific irrigation control strategies with sparse input data

    Get PDF
    Crop and irrigation water use efficiencies may be improved by managing irrigation application timing and volumes using physical and agronomic principles. However, the crop water requirement may be spatially variable due to different soil properties and genetic variations in the crop across the field. Adaptive control strategies can be used to locally control water applications in response to in-field temporal and spatial variability with the aim of maximising both crop development and water use efficiency. A simulation framework ‘VARIwise’ has been created to aid the development, evaluation and management of spatially and temporally varied adaptive irrigation control strategies (McCarthy et al., 2010). VARIwise enables alternative control strategies to be simulated with different crop and environmental conditions and at a range of spatial resolutions. An iterative learning controller and model predictive controller have been implemented in VARIwise to improve the irrigation of cotton. The iterative learning control strategy involves using the soil moisture response to the previous irrigation volume to adjust the applied irrigation volume applied at the next irrigation event. For field implementation this controller has low data requirements as only soil moisture data is required after each irrigation event. In contrast, a model predictive controller has high data requirements as measured soil and plant data are required at a high spatial resolution in a field implementation. Model predictive control involves using a calibrated model to determine the irrigation application and/or timing which results in the highest predicted yield or water use efficiency. The implementation of these strategies is described and a case study is presented to demonstrate the operation of the strategies with various levels of data availability. It is concluded that in situations of sparse data, the iterative learning controller performs significantly better than a model predictive controller

    Air pollution and livestock production

    Get PDF
    The air in a livestock farming environment contains high concentrations of dust particles and gaseous pollutants. The total inhalable dust can enter the nose and mouth during normal breathing and the thoracic dust can reach into the lungs. However, it is the respirable dust particles that can penetrate further into the gas-exchange region, making it the most hazardous dust component. Prolonged exposure to high concentrations of dust particles can lead to respiratory health issues for both livestock and farming staff. Ammonia, an example of a gaseous pollutant, is derived from the decomposition of nitrous compounds. Increased exposure to ammonia may also have an effect on the health of humans and livestock. There are a number of technologies available to ensure exposure to these pollutants is minimised. Through proactive means, (the optimal design and management of livestock buildings) air quality can be improved to reduce the likelihood of risks associated with sub-optimal air quality. Once air problems have taken hold, other reduction methods need to be applied utilising a more reactive approach. A key requirement for the control of concentration and exposure of airborne pollutants to an acceptable level is to be able to conduct real-time measurements of these pollutants. This paper provides a review of airborne pollution including methods to both measure and control the concentration of pollutants in livestock buildings

    The potential for using remote sensing to quantify stress in and predict yield of sugarcane (Saccharum spp. hybrid)

    Get PDF
    Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2010

    Geosensors to Support Crop Production: Current Applications and User Requirements

    Get PDF
    Sensor technology, which benefits from high temporal measuring resolution, real-time data transfer and high spatial resolution of sensor data that shows in-field variations, has the potential to provide added value for crop production. The present paper explores how sensors and sensor networks have been utilised in the crop production process and what their added-value and the main bottlenecks are from the perspective of users. The focus is on sensor based applications and on requirements that users pose for them. Literature and two use cases were reviewed and applications were classified according to the crop production process: sensing of growth conditions, fertilising, irrigation, plant protection, harvesting and fleet control. The potential of sensor technology was widely acknowledged along the crop production chain. Users of the sensors require easy-to-use and reliable applications that are actionable in crop production at reasonable costs. The challenges are to develop sensor technology, data interoperability and management tools as well as data and measurement services in a way that requirements can be met, and potential benefits and added value can be realized in the farms in terms of higher yields, improved quality of yields, decreased input costs and production risks, and less work time and load

    On the Use of Imaging Spectroscopy from Unmanned Aerial Systems (UAS) to Model Yield and Assess Growth Stages of a Broadacre Crop

    Get PDF
    Snap bean production was valued at $363 million in 2018. Moreover, the increasing need in food production, caused by the exponential increase in population, makes this crop vitally important to study. Traditionally, harvest time determination and yield prediction are performed by collecting limited number of samples. While this approach could work, it is inaccurate, labor-intensive, and based on a small sample size. The ambiguous nature of this approach furthermore leaves the grower with under-ripe and over-mature plants, decreasing the final net profit and the overall quality of the product. A more cost-effective method would be a site-specific approach that would save time and labor for farmers and growers, while providing them with exact detail to when and where to harvest and how much is to be harvested (while forecasting yield). In this study we used hyperspectral (i.e., point-based and image-based), as well as biophysical data, to identify spectral signatures and biophysical attributes that could schedule harvest and forecast yield prior to harvest. Over the past two decades, there have been immense advances in the field of yield and harvest modeling using remote sensing data. Nevertheless, there still exists a wide gap in the literature covering yield and harvest assessment as a function of time using both ground-based and unmanned aerial systems. There is a need for a study focusing on crop-specific yield and harvest assessment using a rapid, affordable system. We hypothesize that a down-sampled multispectral system, tuned with spectral features identified from hyperspectral data, could address the mentioned gaps. Moreover, we hypothesize that the airborne data will contain noise that could negatively impact the performance and the reliability of the utilized models. Thus, We address these knowledge gaps with three objectives as below: 1. Assess yield prediction of snap bean crop using spectral and biophysical data and identify discriminating spectral features via statistical and machine learning approaches. 2. Evaluate snap bean harvest maturity at both the plant growth stage and pod maturity level, by means of spectral and biophysical indicators, and identify the corresponding discriminating spectral features. 3. Assess the feasibility of using a deep learning architecture for reducing noise in the hyperspectral data. In the light of the mentioned objectives, we carried out a greenhouse study in the winter and spring of 2019, where we studied temporal change in spectra and physical attributes of snap-bean crop, from Huntington cultivar, using a handheld spectrometer in the visible- to shortwave-infrared domain (400-2500 nm). Chapter 3 of this dissertation focuses on yield assessment of the greenhouse study. Findings from this best-case scenario yield study showed that the best time to study yield is approximately 20-25 days prior to harvest that would give out the most accurate yield predictions. The proposed approach was able to explain variability as high as R2 = 0.72, with spectral features residing in absorption regions for chlorophyll, protein, lignin, and nitrogen, among others. The captured data from this study contained minimal noise, even in the detector fall-off regions. Moving the focus to harvest maturity assessment, Chapter 4 presents findings from this objective in the greenhouse environment. Our findings showed that four stages of maturity, namely vegetative growth, budding, flowering, and pod formation, are distinguishable with 79% and 78% accuracy, respectively, via the two introduced vegetation indices, as snap-bean growth index (SGI) and normalized difference snap-bean growth index (NDSI), respectively. Moreover, pod-level maturity classification showed that ready-to-harvest and not-ready-to-harvest pods can be separated with 78% accuracy with identified wavelengths residing in green, red edge, and shortwave-infrared regions. Moreover, Chapters 5 and 6 focus on transitioning the learned concepts from the mentioned greenhouse scenario to UAS domain. We transitioned from a handheld spectrometer in the visible to short-wave infrared domain (400-2500 nm) to a UAS-mounted hyperspectral imager in the visible-to-near-infrared region (400-1000 nm). Two years worth of data, at two different geographical locations, were collected in upstate New York and examined for yield modeling and harvest scheduling objectives. For analysis of the collected data, we introduced a feature selection library in Python, named “Jostar”, to identify the most discriminating wavelengths. The findings from the yield modeling UAS study show that pod weight and seed length, as two different yield indicators, can be explained with R2 as high as 0.93 and 0.98, respectively. Identified wavelengths resided in blue, green, red, and red edge regions, and 44-55 days after planting (DAP) showed to be the optimal time for yield assessment. Chapter 6, on the other hand, evaluates maturity assessment, in terms of pod classification, from the UAS perspective. Results from this study showed that the identified features resided in blue, green, red, and red-edge regions, contributing to F1 score as high as 0.91 for differentiating between ready-to-harvest vs. not ready-to-harvest. The identified features from this study is in line with those detected from the UAS yield assessment study. In order to have a parallel comparison of the greenhouse study against the UAS study, we adopted the methodology employed for UAS studies and applied it to the greenhouse studies, in Chapter 7. Since the greenhouse data were captured in the visible-to-shortwave-infrared (400-2500 nm) domain, and the UAS study data were captured in the VNIR (400-1000 nm) domain, we truncated the spectral range of the collected data from the greenhouse study to the VNIR domain. The comparison experiment between the greenhouse study and the UAS studies for yield assessment, at two harvest stages early and late, showed that spectral features in 450-470, 500-520, 650, 700-730 nm regions were repeated on days with highest coefficient of determination. Moreover, 46-48 DAP with high coefficient of determination for yield prediction were repeated in five out of six data sets (two early stages, each three data sets). On the other hand, the harvest maturity comparison between the greenhouse study and the UAS data sets showed that similar identified wavelengths reside in ∼450, ∼530, ∼715, and ∼760 nm regions, with performance metric (F1 score) of 0.78, 0.84, and 0.9 for greenhouse, 2019 UAS, and 2020 UAS data, respectively. However, the incorporated noise in the captured data from the UAS study, along with the high computational cost of the classical mathematical approach employed for denoising hyperspectral data, have inspired us to leverage the computational performance of hyperspectral denoising by assessing the feasibility of transferring the learned concepts to deep learning models. In Chapter 8, we approached hyperspectral denoising in spectral domain (1D fashion) for two types of noise, integrated noise and non-independent and non-identically distributed (non-i.i.d.) noise. We utilized Memory Networks due to their power in image denoising for hyperspectral denoising, introduced a new loss and benchmarked it against several data sets and models. The proposed model, HypeMemNet, ranked first - up to 40% in terms of signal-to-noise ratio (SNR) for resolving integrated noise, and first or second, by a small margin for resolving non-i.i.d. noise. Our findings showed that a proper receptive field and a suitable number of filters are crucial for denoising integrated noise, while parameter size was shown to be of the highest importance for non-i.i.d. noise. Results from the conducted studies provide a comprehensive understanding encompassing yield modeling, harvest scheduling, and hyperspectral denoising. Our findings bode well for transitioning from an expensive hyperspectral imager to a multispectral imager, tuned with the identified bands, as well as employing a rapid deep learning model for hyperspectral denoising

    Remote sensing and machine learning for prediction of wheat growth in precision agriculture applications

    Get PDF
    This thesis focuses on remote sensing and machine learning for prediction of wheat growth in precision agriculture applications. Agriculture is the primary productive force, which plays an important role in human activities. Wheat, as one of the essential sources of food, is also a widely planted crop. The impact of weather and climate and some other uncertain factors on wheat production is crucial. Therefore, it is necessary to use reliable and statistically reasonable models for crop growth and yield prediction based on vegetation index variables and other factors, so as to obtain reliable prediction for efficient production. Applying certain artificial intelligence algorithms to the precision agriculture can significantly improve the efficiency of traditional agriculture in crop planting and reduce the consumption of human and natural resources. Remote sensing can objectively, accurately and timely provide a large amount of information for ecological environment and crop growth in agriculture applications. By combining the image and spectral data obtained by remote sensing technology with machine learning, information about wheat growth, yield and insect pests can be learned in time. This thesis focuses on its applications in agriculture, particularly using effective prediction models such as the back propagation neural network and some optimisation algorithms for predicting wheat growth, yield and aphid. The work presented in this thesis address the issues of wheat growth prediction, yield assessment and aphid validation by model building and machine learning algorithm optimisation by means of remote sensing data. Specifically, the following objectives are defined: 1. Analyse multiple vegetation indexes based on the TM 1-4 band data of Landsat satellite and use regression algorithms to train the models and predict wheat growth; 2. Analyse and compare multiple vegetation indexes models by means of spectral data and use regression algorithms to predict wheat yield; 3. Combine spectral vegetation indexes and multiple regression algorithms to predict wheat aphid; 4. Use accurate evaluation criteria for validating the efficacy of the various algorithms. In this thesis, the remote sensing data from the satellite has been applied instead of the airborne-based remote sensing data. Based on the TM 1-4 band image data of Landsat satellite, multiple vegetation indexes were used as the input of regression algorithms. After that, four kinds of regression algorithms such as the multiple linear regression (MR) algorithm, back propagation network (BPNN) algorithm, genetic algorithm (GA) optimised BPNN algorithm and particle swarm optimisation (PSO) optimised BPNN algorithm were used to train the model and predict the LAI and SPAD. The prediction results of each algorithm were compared with the ground truth information collected by hand held instruments on the ground. The relationship between wheat yield and spectral data has been studied. Based on the BPNN algorithm, four kinds of models such as visible hyperspectral index (VHI) model, hyperspectral vegetation index (HVI) model, difference hyperspectral index (DHI) model and normalized hyperspectral index (NHI) model have been utilized to predict wheat yield. For the optimal NHI model, three regression algorithms such as back propagation network (BPNN) algorithm, genetic algorithm (GA) optimised BPNN algorithm and particle swarm optimisation (PSO) optimised BPNN algorithm, were compared to predict wheat yield, and RMSE and R-square of the three algorithms were compared and analysed. Finally, the relationship between wheat aphid and spectral data has been investigated. Nine vegetation indexes related to aphid have been estimated from spectral data as the input of regression algorithms. Five kinds of regression algorithms such as back propagation network (BPNN) algorithm, genetic algorithm (GA) optimised BPNN algorithm, particle swarm optimisation (PSO) optimised BPNN algorithm, ant colony (ACO) optimisation algorithm optimised BPNN algorithm and cuckoo search (CS) optimised BPNN algorithm have been implemented to predict wheat aphid, which was validated with the ground truth information measured by hand-held instruments on the ground. The prediction results of each algorithm have been analysed. The major original contributions of this thesis are as follows: 1. A variety of optimisation algorithms are used to improve the regression analysis of the BPNN algorithm, so that the prediction results of each model for wheat growth, yield and aphid are more accurate. 2. The spectral characteristics of winter wheat canopy have been analysed. The correlation between the absorption band and the associated physical and chemical properties of crops, specially the red edge slope, with the crop yield and wheat aphid damage is established. 3. Adjusted MSE and un-centered R-square, as accurate evaluation criteria for practical applications, are used to compare the prediction results of the models under different dimensions of the observed data. 4. Improve algorithm training by using the cross-validation method to obtain reliable and stable models for the prediction of wheat growth, yield, and aphid. Through repeated cross-validation, a better model can be obtained in the last. Key word:Precision agriculture; BP network, wheat growth assessment; wheat yield prediction, wheat aphid validationThis thesis focuses on remote sensing and machine learning for prediction of wheat growth in precision agriculture applications. Agriculture is the primary productive force, which plays an important role in human activities. Wheat, as one of the essential sources of food, is also a widely planted crop. The impact of weather and climate and some other uncertain factors on wheat production is crucial. Therefore, it is necessary to use reliable and statistically reasonable models for crop growth and yield prediction based on vegetation index variables and other factors, so as to obtain reliable prediction for efficient production. Applying certain artificial intelligence algorithms to the precision agriculture can significantly improve the efficiency of traditional agriculture in crop planting and reduce the consumption of human and natural resources. Remote sensing can objectively, accurately and timely provide a large amount of information for ecological environment and crop growth in agriculture applications. By combining the image and spectral data obtained by remote sensing technology with machine learning, information about wheat growth, yield and insect pests can be learned in time. This thesis focuses on its applications in agriculture, particularly using effective prediction models such as the back propagation neural network and some optimisation algorithms for predicting wheat growth, yield and aphid. The work presented in this thesis address the issues of wheat growth prediction, yield assessment and aphid validation by model building and machine learning algorithm optimisation by means of remote sensing data. Specifically, the following objectives are defined: 1. Analyse multiple vegetation indexes based on the TM 1-4 band data of Landsat satellite and use regression algorithms to train the models and predict wheat growth; 2. Analyse and compare multiple vegetation indexes models by means of spectral data and use regression algorithms to predict wheat yield; 3. Combine spectral vegetation indexes and multiple regression algorithms to predict wheat aphid; 4. Use accurate evaluation criteria for validating the efficacy of the various algorithms. In this thesis, the remote sensing data from the satellite has been applied instead of the airborne-based remote sensing data. Based on the TM 1-4 band image data of Landsat satellite, multiple vegetation indexes were used as the input of regression algorithms. After that, four kinds of regression algorithms such as the multiple linear regression (MR) algorithm, back propagation network (BPNN) algorithm, genetic algorithm (GA) optimised BPNN algorithm and particle swarm optimisation (PSO) optimised BPNN algorithm were used to train the model and predict the LAI and SPAD. The prediction results of each algorithm were compared with the ground truth information collected by hand held instruments on the ground. The relationship between wheat yield and spectral data has been studied. Based on the BPNN algorithm, four kinds of models such as visible hyperspectral index (VHI) model, hyperspectral vegetation index (HVI) model, difference hyperspectral index (DHI) model and normalized hyperspectral index (NHI) model have been utilized to predict wheat yield. For the optimal NHI model, three regression algorithms such as back propagation network (BPNN) algorithm, genetic algorithm (GA) optimised BPNN algorithm and particle swarm optimisation (PSO) optimised BPNN algorithm, were compared to predict wheat yield, and RMSE and R-square of the three algorithms were compared and analysed. Finally, the relationship between wheat aphid and spectral data has been investigated. Nine vegetation indexes related to aphid have been estimated from spectral data as the input of regression algorithms. Five kinds of regression algorithms such as back propagation network (BPNN) algorithm, genetic algorithm (GA) optimised BPNN algorithm, particle swarm optimisation (PSO) optimised BPNN algorithm, ant colony (ACO) optimisation algorithm optimised BPNN algorithm and cuckoo search (CS) optimised BPNN algorithm have been implemented to predict wheat aphid, which was validated with the ground truth information measured by hand-held instruments on the ground. The prediction results of each algorithm have been analysed. The major original contributions of this thesis are as follows: 1. A variety of optimisation algorithms are used to improve the regression analysis of the BPNN algorithm, so that the prediction results of each model for wheat growth, yield and aphid are more accurate. 2. The spectral characteristics of winter wheat canopy have been analysed. The correlation between the absorption band and the associated physical and chemical properties of crops, specially the red edge slope, with the crop yield and wheat aphid damage is established. 3. Adjusted MSE and un-centered R-square, as accurate evaluation criteria for practical applications, are used to compare the prediction results of the models under different dimensions of the observed data. 4. Improve algorithm training by using the cross-validation method to obtain reliable and stable models for the prediction of wheat growth, yield, and aphid. Through repeated cross-validation, a better model can be obtained in the last. Key word:Precision agriculture; BP network, wheat growth assessment; wheat yield prediction, wheat aphid validatio

    Near-infrared spectroscopy in process control and quality management of fruits and wine

    Get PDF
    Recently, rapid quality assessment of food is an increasingly important topic. The rising demand of consumers for high quality products generates a need to establish fast and suitable analytical methods. Near-infrared (NIR) spectroscopy has turned out to be a time-saving, cheap, easy-to-use and environmentally friendly technique, which can be applied for the determination of manifold quality attributes in various kinds of food matrices. This article gives overview of the basic principles of near-infrared measurements and describes the immense field of applications, with the main focus on fruits, grapes and wine and the evaluation of wine aroma

    Leaf nitrogen determination using non-destructive techniques–A review

    Full text link
    © 2017 Taylor & Francis Group, LLC. The optimisation of plant nitrogen-use-efficiency (NUE) has a direct impact on increasing crop production by optimising use of nitrogen fertiliser. Moreover, it protects environment from negative effects of nitrate leaching and nitrous oxide production. Accordingly, nitrogen (N) management in agriculture systems has been major focus of many researchers. Improvement of NUE can be achieved through several methods including more accurate measurement of foliar N contents of crops during different growth phases. There are two types of methods to diagnose foliar N status: destructive and non-destructive. Destructive methods are expensive and time-consuming, as they require tissue sampling and subsequent laboratory analysis. Thus, many farmers find destructive methods to be less attractive. Non-destructive methods are rapid and less expensive but are usually less accurate. Accordingly, improving the accuracy of non-destructive N estimations has become a common goal of many researchers, and various methods varying in complexity and optimality have been proposed for this purpose. This paper reviews various commonly used non-destructive methods for estimating foliar N status of plants
    corecore