28 research outputs found

    A physics-constrained machine learning method for mapping gapless land surface temperature

    Full text link
    More accurate, spatio-temporally, and physically consistent LST estimation has been a main interest in Earth system research. Developing physics-driven mechanism models and data-driven machine learning (ML) models are two major paradigms for gapless LST estimation, which have their respective advantages and disadvantages. In this paper, a physics-constrained ML model, which combines the strengths in the mechanism model and ML model, is proposed to generate gapless LST with physical meanings and high accuracy. The hybrid model employs ML as the primary architecture, under which the input variable physical constraints are incorporated to enhance the interpretability and extrapolation ability of the model. Specifically, the light gradient-boosting machine (LGBM) model, which uses only remote sensing data as input, serves as the pure ML model. Physical constraints (PCs) are coupled by further incorporating key Community Land Model (CLM) forcing data (cause) and CLM simulation data (effect) as inputs into the LGBM model. This integration forms the PC-LGBM model, which incorporates surface energy balance (SEB) constraints underlying the data in CLM-LST modeling within a biophysical framework. Compared with a pure physical method and pure ML methods, the PC-LGBM model improves the prediction accuracy and physical interpretability of LST. It also demonstrates a good extrapolation ability for the responses to extreme weather cases, suggesting that the PC-LGBM model enables not only empirical learning from data but also rationally derived from theory. The proposed method represents an innovative way to map accurate and physically interpretable gapless LST, and could provide insights to accelerate knowledge discovery in land surface processes and data mining in geographical parameter estimation

    Satellite Retrieval of Surface Evapotranspiration with Nonparametric Approach: Accuracy Assessment over a Semiarid Region

    Get PDF
    Surface evapotranspiration (ET) is one of the key surface processes. Reliable estimation of regional ET solely from satellite data remains a challenge. This study applies recently proposed nonparametric (NP) approach to retrieve surface ET, in terms of latent heat flux (LE), over a semiarid region. The involved input parameters are surface net radiation, land surface temperature, near-surface air temperature, and soil heat flux, all of which are retrievals or products of the Moderate-Resolution Imaging Spectroradiometer (MODIS). Field observations are used as ground references, which were obtained from six eddy covariance (EC) sites with different land covers including desert, Gobi, village, orchard, vegetable field, and wetland. Our results show that the accuracy of LE retrievals varies with EC sites with a determination of coefficient from 0.02 to 0.76, a bias from −221.56 W/m2 to 143.77 W/m2, a relative error from 8.82% to 48.35%, and a root mean square error from 67.97 W/m2 to 239.55 W/m2. The error mainly resulted from the uncertainties from MODIS products or the retrieval of net radiation and soil heat flux in nonvegetated region. It highlights the importance of accurate retrieval of the input parameters from satellite data, which are the ongoing tasks of remote sensing community

    Downscaling AMSR-2 Soil Moisture Data With Geographically Weighted Area-to-Area Regression Kriging

    Get PDF
    Soil moisture (SM) plays an important role in the land surface energy balance and water cycle. Microwave remote sensing has been applied widely to estimate SM. However, the application of such data is generally restricted because of their coarse spatial resolution. Downscaling methods have been applied to predict fine-resolution SM from original data with coarse spatial resolution. Commonly, SM is highly spatially variable and, consequently, such local spatial heterogeneity should be considered in a downscaling process. Here, a hybrid geostatistical approach, which integrates geographically weighted regression and area-to-area kriging, is proposed for downscaling microwave SM products. The proposed geographically weighted area-to-area regression kriging (GWATARK) method combines fine-spatial-resolution optical remote sensing data and coarse-spatial-resolution passive microwave remote sensing data, because the combination of both information sources has great potential for mapping fine-spatial-resolution near-surface SM. The GWATARK method was evaluated by producing downscaled SM at 1-km resolution from the 25-km-resolution daily AMSR-2 SM product. Comparison of the downscaled predictions from the GWATARK method and two benchmark methods on three sets of covariates with in situ observations showed that the GWATARK method is more accurate than the two benchmarks. On average, the root-mean-square error value decreased by 20%. The use of additional covariates further increased the accuracy of the downscaled predictions, particularly when using topography-corrected land surface temperature and vegetation-temperature condition index covariates

    Managing Water Resources in Large River Basins

    Get PDF
    Management of water resources in large rivers basins typically differs in important ways from management in smaller basins. While in smaller basins the focus of water resources management may be on project implementation, irrigation and drainage management, water use efficiency and flood operations; in larger basins, because of the greater complexity and competing interests, there is often a greater need for long-term strategic river basin planning across sectors and jurisdictions, and considering social, environmental, and economic outcomes. This puts a focus on sustainable development, including consumptive water use and non-consumptive water uses, such as inland navigation and hydropower. It also requires the consideration of hard or technical issues—data, modeling, infrastructure—as well as soft issues of governance, including legal frameworks, policies, institutions, and political economy. Rapidly evolving technologies could play a significant role in managing large basins. This Special Issue of Water traverses these hard and soft aspects of managing water resources in large river basins through a series of diverse case studies from across the globe that demonstrate recent advances in both technical and governance innovations in river basin management

    Monitoring soil moisture dynamics and energy fluxes using geostationary satellite data

    Get PDF

    Ground, Proximal, and Satellite Remote Sensing of Soil Moisture

    Get PDF
    Soil moisture (SM) is a key hydrologic state variable that is of significant importance for numerous Earth and environmental science applications that directly impact the global environment and human society. Potential applications include, but are not limited to, forecasting of weather and climate variability; prediction and monitoring of drought conditions; management and allocation of water resources; agricultural plant production and alleviation of famine; prevention of natural disasters such as wild fires, landslides, floods, and dust storms; or monitoring of ecosystem response to climate change. Because of the importance and wide‐ranging applicability of highly variable spatial and temporal SM information that links the water, energy, and carbon cycles, significant efforts and resources have been devoted in recent years to advance SM measurement and monitoring capabilities from the point to the global scales. This review encompasses recent advances and the state‐of‐the‐art of ground, proximal, and novel SM remote sensing techniques at various spatial and temporal scales and identifies critical future research needs and directions to further advance and optimize technology, analysis and retrieval methods, and the application of SM information to improve the understanding of critical zone moisture dynamics. Despite the impressive progress over the last decade, there are still many opportunities and needs to, for example, improve SM retrieval from remotely sensed optical, thermal, and microwave data and opportunities for novel applications of SM information for water resources management, sustainable environmental development, and food security

    Modified surface energy balance algorithm for land (M-SEBAL) based on a trapezoidal framework

    Get PDF
    The surface energy balance algorithm for land (SEBAL) has been designed and widely used (and misused) worldwide to estimate evapotranspiration across varying spatial and temporal scales using satellite remote sensing over the past 15 yr. It is, however, beset by visual identification of a hot and cold pixel to determine the temperature difference (dT) between the surface and the lower atmosphere, which is assumed to be linearly correlated with surface radiative temperature (Trad) throughout a scene. To reduce ambiguity in flux estimation by SEBAL due to the subjectivity in extreme pixel selection, this study first demonstrates that SEBAL is of a rectangular framework of the contextual relationship between vegetation fraction (fc) and Trad, which can distort the spatial distribution of heat flux retrievals to varying degrees. End members of SEBAL were replaced by a trapezoidal framework of the fc-Trad space in the modified surface energy balance algorithm for land (M-SEBAL). The warm edge of the trapezoidal framework is determined by analytically deriving temperatures of the bare surface with the largest water stress and the fully vegetated surface with the largest water stress implicit in both energy balance and radiation budget equations. Areally averaged air temperature (Ta) across a study site is taken to be the cold edge of the trapezoidal framework. Coefficients of the linear relationship between dT and Trad can vary with fc but are assumed essentially invariant for the same fc or within the same fc class in M-SEBAL. SEBAL and M-SEBAL are applied to the soil moisture-atmosphere coupling experiment (SMACEX) site in central Iowa, U.S. Results show that M-SEBAL is capable of reproducing latent heat flux in terms of an overall root-mean-square difference of 41.1 W m 2 and mean absolute percentage difference of 8.9% with reference to eddy covariance tower-based measurements for three landsat thematic mapper/enhanced thematic mapper plus imagery acquisition dates in 2002. The retrieval accuracy of SEBAL is generally lower than M-SEBAL, depending largely on the elected extremes. Spatial distributions of heat flux retrievals from SEBAL are distorted to a certain degree due to its intrinsic rectangular framework

    Improved Modeling of Evapotranspiration using Satellite Remote Sensing at Varying Spatial and Temporal Scales

    Get PDF
    The overall objective of the dissertation was to improve the spatial and temporal representation and retrieval accuracy of evapotranspiration (ET) using satellite imagery. Specifically, (1) aiming at improving the spatial representation of daily net radiation (Rn,24) under rugged terrains, a new algorithm, which accounts for terrain effects on available shortwave radiation throughout a day and utilizes four observations of Moderate-resolution Imaging Spectroradiometer (MODIS)-based land surface temperature retrievals to simulate daily net longwave radiation, was developed. The algorithm appears to be capable of capturing heterogeneity in Rn,24 at watershed scales. (2) Most satellite-based ET models are constrained to work under cloud-free conditions. To address this deficiency, an approach of integrating a satellite-based model with a large-scale feedback model was proposed to generate ET time series for all days. Results show that the ET time series estimates can exhibit complementary features between the potential ET and the actual ET at watershed scales. (3) For improving the operability of Two-source Energy Balance (TSEB) which requires computing resistance networks and tuning the Priestley-Taylor parameter involved, a new Two-source Trapezoid Model for ET (TTME) based on deriving theoretical boundaries of evaporative fraction (EF) and the concept of soil surface moisture availability isopleths was developed. It was applied to the Soil Moisture and Atmosphere Coupling Experiment (SMACEX) site in central Iowa, U.S., on three Landsat TM/ETM imagery acquisition dates in 2002. Results show the EF and latent heat flux (LE) estimates with a mean absolute percentage difference (MAPD) of 6.7 percent and 8.7 percent, respectively, relative to eddy covariance tower-based measurements after forcing closure by the Bowen ratio technique. (4) The domain and resolution dependencies of the Surface Energy Balance Algorithm for Land (SEBAL) and the triangle model were systematically investigated. Derivation of theoretical boundaries of EF for the two models could effectively constrain errors/uncertainties arising from these dependencies. (5) A Modified SEBAL (M-SEBAL) was consequently proposed, in which subjectivity involved in the selection of extreme pixels by the operator is eliminated. The performance of M-SEBAL at the SMACEX site is reasonably well, showing EF and LE estimates with an MAPD of 6.3 percent and 8.9 percent, respectively
    corecore