1,376 research outputs found

    KLF6 and STAT3 Co-Occupy Regulatory DNA and Functionally Synergize to Promote Axon Growth in CNS Neurons

    Get PDF
    The failure of axon regeneration in the CNS limits recovery from damage and disease. Members of the KLF family of transcription factors can exert both positive and negative effects on axon regeneration, but the underlying mechanisms are unclear. Here we show that forced expression of KLF6 promotes axon regeneration by corticospinal tract neurons in the injured spinal cord. RNA sequencing identified 454 genes whose expression changed upon forced KLF6 expression in vitro, including sub-networks that were highly enriched for functions relevant to axon extension including cytoskeleton remodeling, lipid synthesis, and bioenergetics. In addition, promoter analysis predicted a functional interaction between KLF6 and a second transcription factor, STAT3, and genome-wide footprinting using ATAC-Seq data confirmed frequent co-occupancy. Co-expression of the two factors yielded a synergistic elevation of neurite growth in vitro. These data clarify the transcriptional control of axon growth and point the way toward novel interventions to promote CNS regeneration

    Understanding safety-critical interactions with a home medical device through Distributed Cognition

    Get PDF
    As healthcare shifts from the hospital to the home, it is becoming increasingly important to understand how patients interact with home medical devices, to inform the safe and patient-friendly design of these devices. Distributed Cognition (DCog) has been a useful theoretical framework for understanding situated interactions in the healthcare domain. However, it has not previously been applied to study interactions with home medical devices. In this study, DCog was applied to understand renal patients’ interactions with Home Hemodialysis Technology (HHT), as an example of a home medical device. Data was gathered through ethnographic observations and interviews with 19 renal patients and interviews with seven professionals. Data was analyzed through the principles summarized in the Distributed Cognition for Teamwork methodology. In this paper we focus on the analysis of system activities, information flows, social structures, physical layouts, and artefacts. By explicitly considering different ways in which cognitive processes are distributed, the DCog approach helped to understand patients’ interaction strategies, and pointed to design opportunities that could improve patients’ experiences of using HHT. The findings highlight the need to design HHT taking into consideration likely scenarios of use in the home and of the broader home context. A setting such as home hemodialysis has the characteristics of a complex and safety-critical socio-technical system, and a DCog approach effectively helps to understand how safety is achieved or compromised in such a system

    Mobile operators as banks or vice-versa? and: the challenges of Mobile channels for banks

    Get PDF
    This short paper addresses the strategic challenges of deposit banks, and payment clearinghouses, posed by the growing role of mobile operators as collectors and payment agents of flow of cash for themselves and third parties. Through analysis and data analysis from selected operators , it is shown that mobile operators achieve as money flow handlers levels of efficiency , profitability ,and risk control comparable with deposit banks ñ€“ Furthermore , the payment infrastructures deployed by both are found to be quite similar , and are analyzed in relation to strategic challenges and opportunities This paves the way to either mobile operators taking a bigger role ,or for banks to tie up such operators to them even more tightly ,or for alliances/mergers to take place ,all these options being subject to regulatory evolution as analyzed as well . The reader should acknowledge that there is no emphasis on specific Mobile banking (M-Banking) technologies (security, terminals, application software) , nor on related market forces from the user demand point of view.banking;industry structure;mobile networks;operational cash flow;regulations;transaction systems

    Recombinant "IMS TAG" proteins : a new method for validating bottom-up matrix-assisted laser desorption/ionisation ion mobility separation mass spectrometry imaging

    Get PDF
    Rationale - Matrix assisted laser desorption ionisation mass spectrometry imaging (MALDI-MSI) provides a methodology to map the distribution of peptides generated by in situ tryptic digestion of biological tissue. It is challenging to correlate these peptides to the proteins from which they arise because of the many potentially overlapping and hence interfering peptide signals generated. Methods - A recombinant protein has been synthesised that when cleaved with trypsin yields a range of peptide standards for use as identification and quantification markers for multiple proteins in one MALDI-IMS-MSI experiment. Mass spectrometry images of the distribution of proteins in fresh frozen and formalin fixed paraffin embedded tissue samples following in situ tryptic digestion were generated by isolating signals on the basis of their m/z value and ion mobility drift time which were correlated to matching peptides in the recombinant standard. Results - Tryptic digestion of the IMS-TAG protein and MALDI-MS analysis yielded values for m/z and ion mobility drift time for the signature peptides included in it. MALDI-IMS-MSI images for the distribution of the proteins HSP 90 and Vimentin, in FFPE EMT6 mouse tumours and HSP-90 and Plectin in a fresh frozen mouse fibrosarcoma were generated by extracting ion images at the corresponding m/z and drift time from the tissue samples. Conclusions - The IMS-TAG approach provides a new means to confirm the identity of peptides generated by in situ digestion of biological tissue.</p

    A Model of Autonomous System for Scientific Experiments and Spacecraft Control for Deep Space Missions

    Get PDF
    Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, June, 2017The particularities of autonomous control system for deep space missions are described. A new approach for autonomous control system development is proposed and analyzed in details. Some models are analyzed and compared. The general formal model is based on the theory of communicating sequential processes (CSP). Methods for reconfiguration, verification and trace control are described. The software that is appropriate not only for the spacecraft flight path control but also for autonomous control of scientific apparatus operation and science experiments parameters is described. The software enables onboard scientific apparatus to autonomously detect and respond to science events Science algorithms, including onboard event detection, feature detection, change detection, and unusualness detection, are proposed to be used to analyze science data. Thus detecting features of scientific interest these algorithms are used to downlink only significant science data. These onboard science algorithms are inputs to onboard decision-making Replaner that modify the spacecraft observation plan to capture high value science events. This new observation plan is input for the Task execution subsystem of the Autonomous control system (ACS), able to adjust the plan to succeed despite run-time anomalies and uncertainties, and after it is executed by the ACS, which controls onboard scientific apparatus to enable an autonomous goal-directed exploration and data acquisition to maximize science return.Association for the Development of the Information Society, Institute of Mathematics and Informatics Bulgarian Academy of Sciences, Plovdiv University "Paisii Hilendarski

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    MODELING REQUIREMENTS FOR FUTURE: ISSUES AND IMPLEMENTATION CONSIDERATIONS

    Get PDF
    In this paper, we discuss some requirements for future CASE (Computer Aided Software/Systems Engineering) environments. These requirements include increased modifiability and flexibility as well as support for task and agent models. We claim that they can only be addressed by developing more powerful representation and modeling techniques. As a possible basis for a modeling technique, we propose the GOPRR (Graph-Object-Property-Relationship-Role) data model, which addresses some of these requirements. In addition, a general information architecture for a future CASE environment is outlined. It includes three kinds of models for methodology specification: meta-datamodels, activity (task) models, and agent models. These models are defined using the GOPRR model with some additional concepts for IS development process and agent participation

    Mobile operators as banks or vice-versa? and: the challenges of Mobile channels for banks

    Get PDF
    This short paper addresses the strategic challenges of deposit banks, and payment clearinghouses, posed by the growing role of mobile operators as collectors and payment agents of flow of cash for themselves and third parties. Through analysis and data analysis from selected operators , it is shown that mobile operators achieve as money flow handlers levels of efficiency , profitability ,and risk control comparable with deposit banks – Furthermore , the payment infrastructures deployed by both are found to be quite similar , and are analyzed in relation to strategic challenges and opportunities This paves the way to either mobile operators taking a bigger role ,or for banks to tie up such operators to them even more tightly ,or for alliances/mergers to take place ,all these options being subject to regulatory evolution as analyzed as well . The reader should acknowledge that there is no emphasis on specific Mobile banking (M-Banking) technologies (security, terminals, application software) , nor on related market forces from the user demand point of view
    • 

    corecore