252 research outputs found

    Software-Programmed Optical Networking with Integrated NFV Service Provisioning

    Get PDF
    We showcase demonstrations of “program & compile” styled optical networking as well as open platforms & standards based NFV service provisioning using a proof-of-concept implementation of the Software-Programmed Networking Operating System (SPN OS). We showcase demonstrations of “program & compile” styled optical networking as well as open platforms & standards based NFV service provisioning using a proof-of-concept implementation of the Software-Programmed Networking Operating System (SPN OS)

    Optical Network as a Service for Service Function Chaining across Datacenters

    Get PDF
    We present the SPN OS, a Network-as-a-Service orchestration platform for NFV/SDN integrated service provisioning across multiple datacenters over packet/optical networks. Our prototype showcases template-driven service function chaining and high-level network programming-based optical networking. We present the SPN OS, a Network-as-a-Service orchestration platform for NFV/SDN integrated service provisioning across multiple datacenters over packet/optical networks. Our prototype showcases template-driven service function chaining and high-level network programming-based optical networking

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results

    Energy-Efficient Softwarized Networks: A Survey

    Full text link
    With the dynamic demands and stringent requirements of various applications, networks need to be high-performance, scalable, and adaptive to changes. Researchers and industries view network softwarization as the best enabler for the evolution of networking to tackle current and prospective challenges. Network softwarization must provide programmability and flexibility to network infrastructures and allow agile management, along with higher control for operators. While satisfying the demands and requirements of network services, energy cannot be overlooked, considering the effects on the sustainability of the environment and business. This paper discusses energy efficiency in modern and future networks with three network softwarization technologies: SDN, NFV, and NS, introduced in an energy-oriented context. With that framework in mind, we review the literature based on network scenarios, control/MANO layers, and energy-efficiency strategies. Following that, we compare the references regarding approach, evaluation method, criterion, and metric attributes to demonstrate the state-of-the-art. Last, we analyze the classified literature, summarize lessons learned, and present ten essential concerns to open discussions about future research opportunities on energy-efficient softwarized networks.Comment: Accepted draft for publication in TNSM with minor updates and editin

    Experimental SDN Control Solutions for Automatic Operations and Management of 5G Services in a Fixed Mobile Converged Packet-Optical Network

    Get PDF
    5G networks will impose network operators to accommodate services demanding heterogeneous and stringent requirements in terms of increased bandwidth, reduced latency, higher availability, etc. as well as enabling emerging capabilities such as slicing. Operators will be then forced to make notable investments in their infrastructure but the revenue is not envisaged to be proportional. Thereby, operators are seeking for more cost-effective solutions to keep their competitiveness. An appealing solution is to integrate all (broadband) services including both fixed and mobile in a convergent way. This is referred to as Fixed Mobile Convergence (FMC). FMC allows seamlessly serving any kind of access service over the same network infrastructure (access, aggregation and core) and relying on common set of control and operation functions. To this end, FMC leverages the benefits provided by Software Defined Networking (SDN) and Network Function Virtualization (NFV). First, we discuss some of the explored FMC solutions and technologies, from both structural and functional perspectives Next, focusing on a Multi-Layer (Packet and Optical) Aggregation Network, we report two implemented and experimentally validated SDN/NFV orchestration architectures providing feasibleThis work has been partially funded by the Spanish Ministry MINECO projects DESTELLO (TEC2015-69256-R) and 5G-REFINE (TEC2017-88373-R), and the EU H2020 5G TRANSFORMER project (grant no. 761536)

    Secure NFV Orchestration Over an SDN-Controlled Optical Network With Time-Shared Quantum Key Distribution Resources

    Get PDF
    Quantum key distribution (QKD) is a state-of-the-art method of generating cryptographic keys by exchanging single photons. Measurements on the photons are constrained by the laws of quantum mechanics, and it is from this that the keys derive their security. Current public key encryption relies on mathematical problems that cannot be solved efficiently using present-day technologies; however, it is vulnerable to computational advances. In contrast QKD generates truly random keys secured against computational advances and more general attacks when implemented properly. On the other hand, networks are moving towards a process of softwarization with the main objective to reduce cost in both, the deployment and in the network maintenance. This process replaces traditional network functionalities (or even full network instances) typically performed in network devices to be located as software distributed across commodity data centers. Within this context, network function virtualization (NFV) is a new concept in which operations of current proprietary hardware appliances are decoupled and run as software instances. However, the security of NFV still needs to be addressed prior to deployment in the real world. In particular, virtual network function (VNF) distribution across data centers is a risk for network operators, as an eavesdropper could compromise not just virtualized services, but the whole infrastructure. We demonstrate, for the first time, a secure architectural solution for VNF distribution, combining NFV orchestration and QKD technology by scheduling an optical network using SDN. A time-shared approach is designed and presented as a cost-effective solution for practical deployment, showing the performance of different quantum links in a distributed environment

    Network Service Orchestration: A Survey

    Full text link
    Business models of network service providers are undergoing an evolving transformation fueled by vertical customer demands and technological advances such as 5G, Software Defined Networking~(SDN), and Network Function Virtualization~(NFV). Emerging scenarios call for agile network services consuming network, storage, and compute resources across heterogeneous infrastructures and administrative domains. Coordinating resource control and service creation across interconnected domains and diverse technologies becomes a grand challenge. Research and development efforts are being devoted to enabling orchestration processes to automate, coordinate, and manage the deployment and operation of network services. In this survey, we delve into the topic of Network Service Orchestration~(NSO) by reviewing the historical background, relevant research projects, enabling technologies, and standardization activities. We define key concepts and propose a taxonomy of NSO approaches and solutions to pave the way towards a common understanding of the various ongoing efforts around the realization of diverse NSO application scenarios. Based on the analysis of the state of affairs, we present a series of open challenges and research opportunities, altogether contributing to a timely and comprehensive survey on the vibrant and strategic topic of network service orchestration.Comment: Accepted for publication at Computer Communications Journa

    Sharing of crosshaul networks via a multi-domain exchange environment for 5G services

    Get PDF
    Proceeding of: 2017 IEEE Conference on Network Softwarization (NetSoft)Next 5G networks will force service and network providers to support a huge variety of final services with very different requirements in terms of bandwidth, latency, etc. In parallel, vertical industries, as customers, will use 5G networks as technical enablers to support their businesses, demanding appropriate mechanisms for a flexible access and control of network and computing resource slices in the locations where such vertical have business. Since the footprint and the availability of resources to support the variety of services could be limited on the primary provider side, open environments enabling the trading of resources in the form of slices are required to facilitate the sharing of infrastructure with the necessary isolation and scalability. Here, this is exemplified by the proposal of adaptations between two prevalent architectures being defined in the EU H2020 projects 5G-Crosshaul and 5GExchange for allowing the trading of crosshaul resources enabling 5G services for Verticals.This work has been supported by the European Community through the projects 5GEx (grant no. 671636), 5G-Crosshaul (grant no. 671598), and 5G-Transformer (grant no. 761536), within the H2020 programme
    corecore