1,070 research outputs found

    A survey on OFDM-based elastic core optical networking

    Get PDF
    Orthogonal frequency-division multiplexing (OFDM) is a modulation technology that has been widely adopted in many new and emerging broadband wireless and wireline communication systems. Due to its capability to transmit a high-speed data stream using multiple spectral-overlapped lower-speed subcarriers, OFDM technology offers superior advantages of high spectrum efficiency, robustness against inter-carrier and inter-symbol interference, adaptability to server channel conditions, etc. In recent years, there have been intensive studies on optical OFDM (O-OFDM) transmission technologies, and it is considered a promising technology for future ultra-high-speed optical transmission. Based on O-OFDM technology, a novel elastic optical network architecture with immense flexibility and scalability in spectrum allocation and data rate accommodation could be built to support diverse services and the rapid growth of Internet traffic in the future. In this paper, we present a comprehensive survey on OFDM-based elastic optical network technologies, including basic principles of OFDM, O-OFDM technologies, the architectures of OFDM-based elastic core optical networks, and related key enabling technologies. The main advantages and issues of OFDM-based elastic core optical networks that are under research are also discussed

    Energy management in communication networks: a journey through modelling and optimization glasses

    Full text link
    The widespread proliferation of Internet and wireless applications has produced a significant increase of ICT energy footprint. As a response, in the last five years, significant efforts have been undertaken to include energy-awareness into network management. Several green networking frameworks have been proposed by carefully managing the network routing and the power state of network devices. Even though approaches proposed differ based on network technologies and sleep modes of nodes and interfaces, they all aim at tailoring the active network resources to the varying traffic needs in order to minimize energy consumption. From a modeling point of view, this has several commonalities with classical network design and routing problems, even if with different objectives and in a dynamic context. With most researchers focused on addressing the complex and crucial technological aspects of green networking schemes, there has been so far little attention on understanding the modeling similarities and differences of proposed solutions. This paper fills the gap surveying the literature with optimization modeling glasses, following a tutorial approach that guides through the different components of the models with a unified symbolism. A detailed classification of the previous work based on the modeling issues included is also proposed

    IDEALIST control and service management solutions for dynamic and adaptive flexi-grid DWDM networks

    Get PDF
    Wavelength Switched Optical Networks (WSON) were designed with the premise that all channels in a network have the same spectrum needs, based on the ITU-T DWDM grid. However, this rigid grid-based approach is not adapted to the spectrum requirements of the signals that are best candidates for long-reach transmission and high-speed data rates of 400Gbps and beyond. An innovative approach is to evolve the fixed DWDM grid to a flexible grid, in which the optical spectrum is partitioned into fixed-sized spectrum slices. This allows facilitating the required amount of optical bandwidth and spectrum for an elastic optical connection to be dynamically and adaptively allocated by assigning the necessary number of slices of spectrum. The ICT IDEALIST project will provide the architectural design, protocol specification, implementation, evaluation and standardization of a control plane and a network and service management system. This architecture and tools are necessary to introduce dynamicity, elasticity and adaptation in flexi-grid DWDM networks. This paper provides an overview of the objectives, framework, functional requirements and use cases of the elastic control plane and the adaptive network and service management system targeted in the ICT IDEALIST project

    On QoS-assured degraded provisioning in service-differentiated multi-layer elastic optical networks

    Full text link
    The emergence of new network applications is driving network operators to not only fulfill dynamic bandwidth requirements, but offer various grades of service. Degraded provisioning provides an effective solution to flexibly allocate resources in various dimensions to reduce blocking for differentiated demands when network congestion occurs. In this work, we investigate the novel problem of online degraded provisioning in service-differentiated multi-layer networks with optical elasticity. Quality of Service (QoS) is assured by service-holding-time prolongation and immediate access as soon as the service arrives without set-up delay. We decompose the problem into degraded routing and degraded resource allocation stages, and design polynomial-time algorithms with the enhanced multi-layer architecture to increase the network flexibility in temporal and spectral dimensions. Illustrative results verify that we can achieve significant reduction of network service failures, especially for requests with higher priorities. The results also indicate that degradation in optical layer can increase the network capacity, while the degradation in electric layer provides flexible time-bandwidth exchange.Comment: accepted by IEEE GLOBECOM 201

    Artificial intelligence (AI) methods in optical networks: A comprehensive survey

    Get PDF
    Producción CientíficaArtificial intelligence (AI) is an extensive scientific discipline which enables computer systems to solve problems by emulating complex biological processes such as learning, reasoning and self-correction. This paper presents a comprehensive review of the application of AI techniques for improving performance of optical communication systems and networks. The use of AI-based techniques is first studied in applications related to optical transmission, ranging from the characterization and operation of network components to performance monitoring, mitigation of nonlinearities, and quality of transmission estimation. Then, applications related to optical network control and management are also reviewed, including topics like optical network planning and operation in both transport and access networks. Finally, the paper also presents a summary of opportunities and challenges in optical networking where AI is expected to play a key role in the near future.Ministerio de Economía, Industria y Competitividad (Project EC2014-53071-C3-2-P, TEC2015-71932-REDT
    corecore