6,875 research outputs found

    Dependable design for low-cost ultra-low-power processors

    Get PDF
    Emerging applications in the Internet of Things (IoT) domain, such as wearables, implantables, smart tags, and wireless sensor networks put severe power, cost, reliability, and security constraints on hardware system design. This dissertation focuses on the architecture and design of dependable ultra-low power computing systems. Specifically, it proposes architecture and design techniques that exploit the unique application and usage characteristics of future computing systems to deliver low power, while meeting the reliability and security constraints of these systems. First, this dissertation considers the challenge of achieving both low power and high reliability in SRAM memories. It proposes both an architectural technique to reduce the overheads of error correction and a technique that uses the nature of error correcting codes to allow lower voltage operation without sacrificing reliability. Next, this dissertation considers low power and low cost. By leveraging the fact that many IoT systems are embedded in nature and will run the same application for their entire lifetime, fine-grained usage characteristics of the hardware-software system can be determined at design time. This dissertation presents a novel hardware-software co-analysis based on symbolic simulation that can determine the possible states of the processor throughout any execution of a specific application. This enables power-gating where more gates are turned off for longer, bespoke processors customized to specific applications, and stricter determination of peak power bounds. Finally, this dissertation considers achieving secure IoT systems at low cost and power overhead. By leveraging the hardware-software co-analysis, this dissertation shows that gate-level information flow security guarantees can be provided without hardware overheads

    An Energy-Efficient Reconfigurable DTLS Cryptographic Engine for End-to-End Security in IoT Applications

    Get PDF
    This paper presents a reconfigurable cryptographic engine that implements the DTLS protocol to enable end-to-end security for IoT. This implementation of the DTLS engine demonstrates 10x reduction in code size and 438x improvement in energy-efficiency over software. Our ECC primitive is 237x and 9x more energy-efficient compared to software and state-of-the-art hardware respectively. Pairing the DTLS engine with an on-chip RISC-V allows us to demonstrate applications beyond DTLS with up to 2 orders of magnitude energy savings.Comment: Published in 2018 IEEE International Solid-State Circuits Conference (ISSCC

    An Energy-Efficient Reconfigurable DTLS Cryptographic Engine for End-to-End Security in IoT Applications

    Full text link
    This paper presents a reconfigurable cryptographic engine that implements the DTLS protocol to enable end-to-end security for IoT. This implementation of the DTLS engine demonstrates 10x reduction in code size and 438x improvement in energy-efficiency over software. Our ECC primitive is 237x and 9x more energy-efficient compared to software and state-of-the-art hardware respectively. Pairing the DTLS engine with an on-chip RISC-V allows us to demonstrate applications beyond DTLS with up to 2 orders of magnitude energy savings.Comment: Published in 2018 IEEE International Solid-State Circuits Conference (ISSCC

    An IoT Endpoint System-on-Chip for Secure and Energy-Efficient Near-Sensor Analytics

    Full text link
    Near-sensor data analytics is a promising direction for IoT endpoints, as it minimizes energy spent on communication and reduces network load - but it also poses security concerns, as valuable data is stored or sent over the network at various stages of the analytics pipeline. Using encryption to protect sensitive data at the boundary of the on-chip analytics engine is a way to address data security issues. To cope with the combined workload of analytics and encryption in a tight power envelope, we propose Fulmine, a System-on-Chip based on a tightly-coupled multi-core cluster augmented with specialized blocks for compute-intensive data processing and encryption functions, supporting software programmability for regular computing tasks. The Fulmine SoC, fabricated in 65nm technology, consumes less than 20mW on average at 0.8V achieving an efficiency of up to 70pJ/B in encryption, 50pJ/px in convolution, or up to 25MIPS/mW in software. As a strong argument for real-life flexible application of our platform, we show experimental results for three secure analytics use cases: secure autonomous aerial surveillance with a state-of-the-art deep CNN consuming 3.16pJ per equivalent RISC op; local CNN-based face detection with secured remote recognition in 5.74pJ/op; and seizure detection with encrypted data collection from EEG within 12.7pJ/op.Comment: 15 pages, 12 figures, accepted for publication to the IEEE Transactions on Circuits and Systems - I: Regular Paper

    From FPGA to ASIC: A RISC-V processor experience

    Get PDF
    This work document a correct design flow using these tools in the Lagarto RISC- V Processor and the RTL design considerations that must be taken into account, to move from a design for FPGA to design for ASIC
    corecore