10 research outputs found

    내장형 프로세서에서의 코드 크기 최적화를 위한 아키텍처 설계 및 컴파일러 지원

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2014. 2. 백윤흥.Embedded processors usually need to satisfy very tight design constraints to achieve low power consumption, small chip area, and high performance. One of the obstacles to meeting these requirements is related to delivering instructions from instruction memory/caches. The size of instruction memory/cache considerably contributes total chip area. Further, frequent access to caches incurs high power/energy consumption and significantly hampers overall system performance due to cache misses. To reduce the negative effects of the instruction delivery, therefore, this study focuses on the sizing of instruction memory/cache through code size optimization. One observation for code size optimization is that very long instruction word (VLIW) architectures often consume more power and memory space than necessary due to long instruction bit-width. One way to lessen this problem is to adopt a reduced bit-width ISA (Instruction Set Architecture) that has a narrower instruction word length. In practice, however, it is impossible to convert a given ISA fully into an equivalent reduced bit-width one because the narrow instruction word, due to bitwidth restrictions, can encode only a small subset of normal instructions in the original ISA. To explore the possibility of complete conversion of an existing 32-bit ISA into a 16-bit one that supports effectively all 32-bit instructions, we propose the reduced bit-width (e.g. 16-bit × 4-way) VLIW architectures that equivalently behave as their original bit-width (e.g. 32-bit × 4-way) architectures with the help of dynamic implied addressing mode (DIAM). Second, we observe that code duplication techniques have been proposed to increase the reliability against soft errors in multi-issue embedded systems such as VLIW by exploiting empty slots for duplicated instructions. Unfortunately, all duplicated instructions cannot be allocated to empty slots, which enforces generating additional VLIW packets to include the duplicated instructions. The increase of code size due to the extra VLIW packets is necessarily accompanied with the enhanced reliability. In order to minimize code size, we propose a novel approach compiler-assisted dynamic code duplication scheme, which accepts an assembly code composed of only original instructions as input, and generates duplicated instructions at runtime with the help of encoded information attached to original instructions. Since the duplicates of original instructions are not explicitly present in the assembly code, the increase of code size due to the duplicated instructions can be avoided in the proposed scheme. Lastly, the third observation is that, to cope with soft errors similarly to the second observation, a recently proposed software-based technique with TMR (Triple Modular Redundancy) implemented on coarse-grained reconfigurable architectures (CGRA) incurs the increase of configuration size, which is corresponding to the code size of CGRA, and thus extreme overheads in terms of runtime and energy consumption mainly due to expensive voting mechanisms for the outputs from the triplication of every operation. To reduce the expensive performance overhead due to the large configuration from the validation mechanism, we propose selective validation mechanisms for efficient modular redundancy techniques in the datapath on CGRA. The proposed techniques selectively validate the results at synchronous operations rather than every operation.Abstract i Chapter 1 Introduction 1 1.1 Instruction Delivery . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 The causes of code size increase . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Instruction Bit-width in VLIW Architectures . . . . . . . . . 2 1.2.2 Instruction Redundancy . . . . . . . . . . . . . . . . . . . . 3 Chapter 2 Reducing Instruction Bit-width with Dynamic Implied Addressing Mode (DIAM) 7 2.1 Conceptual View . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Architecture Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 ISA Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.2 Remote Operand Array Buffer . . . . . . . . . . . . . . . . . 15 2.2.3 Microarchitecture . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3 Compiler Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.1 16-bit Instruction Generation . . . . . . . . . . . . . . . . . . 24 2.3.2 DDG Construction & Scheduling . . . . . . . . . . . . . . . 26 2.4 VLES(Variable Length Execution Set) Architecture with a Reduced Bit-width Instruction Set . . . . . . . . . . . . . . . . . . . . . . . . 29 2.4.1 Architecture Design . . . . . . . . . . . . . . . . . . . . . . 30 2.4.2 Compiler Support . . . . . . . . . . . . . . . . . . . . . . . . 34 2.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.5.3 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . 48 2.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Chapter 3 Compiler-assisted Dynamic Code Duplication Scheme for Soft Error Resilient VLIW Architectures 53 3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.2 Compiler-assisted Dynamic Code Duplication . . . . . . . . . . . . . 58 3.2.1 ISA Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.2.2 Modified Fetch Stage . . . . . . . . . . . . . . . . . . . . . . 62 3.3 Compilation Techniques . . . . . . . . . . . . . . . . . . . . . . . . 66 3.3.1 Static Code Duplication Algorithm . . . . . . . . . . . . . . 67 3.3.2 Vulnerability-aware Duplication Algorithm . . . . . . . . . . 68 3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 71 3.4.2 Effectiveness of Compiler-assisted Dynamic Code Duplication 73 3.4.3 Effectiveness of Vulnerability-aware Duplication Algorithm . 77 Chapter 4 Selective Validation Techniques for Robust CGRAs against Soft Errors 85 4.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.3 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.3.1 Selective Validation Mechanism . . . . . . . . . . . . . . . . 91 4.3.2 Compilation Flow and Performance Analysis . . . . . . . . . 92 4.3.3 Fault Coverage Analysis . . . . . . . . . . . . . . . . . . . . 96 4.3.4 Our Optimization - Minimizing Store Operation . . . . . . . . 97 4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 100 Chapter 5 Conculsion 110 초록 122Docto

    Dependable Embedded Systems

    Get PDF
    This Open Access book introduces readers to many new techniques for enhancing and optimizing reliability in embedded systems, which have emerged particularly within the last five years. This book introduces the most prominent reliability concerns from today’s points of view and roughly recapitulates the progress in the community so far. Unlike other books that focus on a single abstraction level such circuit level or system level alone, the focus of this book is to deal with the different reliability challenges across different levels starting from the physical level all the way to the system level (cross-layer approaches). The book aims at demonstrating how new hardware/software co-design solution can be proposed to ef-fectively mitigate reliability degradation such as transistor aging, processor variation, temperature effects, soft errors, etc. Provides readers with latest insights into novel, cross-layer methods and models with respect to dependability of embedded systems; Describes cross-layer approaches that can leverage reliability through techniques that are pro-actively designed with respect to techniques at other layers; Explains run-time adaptation and concepts/means of self-organization, in order to achieve error resiliency in complex, future many core systems

    New Design Techniques for Dynamic Reconfigurable Architectures

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Design Space Exploration and Resource Management of Multi/Many-Core Systems

    Get PDF
    The increasing demand of processing a higher number of applications and related data on computing platforms has resulted in reliance on multi-/many-core chips as they facilitate parallel processing. However, there is a desire for these platforms to be energy-efficient and reliable, and they need to perform secure computations for the interest of the whole community. This book provides perspectives on the aforementioned aspects from leading researchers in terms of state-of-the-art contributions and upcoming trends

    Internet of Things. Information Processing in an Increasingly Connected World

    Get PDF
    This open access book constitutes the refereed post-conference proceedings of the First IFIP International Cross-Domain Conference on Internet of Things, IFIPIoT 2018, held at the 24th IFIP World Computer Congress, WCC 2018, in Poznan, Poland, in September 2018. The 12 full papers presented were carefully reviewed and selected from 24 submissions. Also included in this volume are 4 WCC 2018 plenary contributions, an invited talk and a position paper from the IFIP domain committee on IoT. The papers cover a wide range of topics from a technology to a business perspective and include among others hardware, software and management aspects, process innovation, privacy, power consumption, architecture, applications

    Power Consumption Analysis, Measurement, Management, and Issues:A State-of-the-Art Review of Smartphone Battery and Energy Usage

    Get PDF
    The advancement and popularity of smartphones have made it an essential and all-purpose device. But lack of advancement in battery technology has held back its optimum potential. Therefore, considering its scarcity, optimal use and efficient management of energy are crucial in a smartphone. For that, a fair understanding of a smartphone's energy consumption factors is necessary for both users and device manufacturers, along with other stakeholders in the smartphone ecosystem. It is important to assess how much of the device's energy is consumed by which components and under what circumstances. This paper provides a generalized, but detailed analysis of the power consumption causes (internal and external) of a smartphone and also offers suggestive measures to minimize the consumption for each factor. The main contribution of this paper is four comprehensive literature reviews on: 1) smartphone's power consumption assessment and estimation (including power consumption analysis and modelling); 2) power consumption management for smartphones (including energy-saving methods and techniques); 3) state-of-the-art of the research and commercial developments of smartphone batteries (including alternative power sources); and 4) mitigating the hazardous issues of smartphones' batteries (with a details explanation of the issues). The research works are further subcategorized based on different research and solution approaches. A good number of recent empirical research works are considered for this comprehensive review, and each of them is succinctly analysed and discussed

    Proceedings of the 21st Conference on Formal Methods in Computer-Aided Design – FMCAD 2021

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Kommunikation und Bildverarbeitung in der Automation

    Get PDF
    In diesem Open-Access-Tagungsband sind die besten Beiträge des 9. Jahreskolloquiums "Kommunikation in der Automation" (KommA 2018) und des 6. Jahreskolloquiums "Bildverarbeitung in der Automation" (BVAu 2018) enthalten. Die Kolloquien fanden am 20. und 21. November 2018 in der SmartFactoryOWL, einer gemeinsamen Einrichtung des Fraunhofer IOSB-INA und der Technischen Hochschule Ostwestfalen-Lippe statt. Die vorgestellten neuesten Forschungsergebnisse auf den Gebieten der industriellen Kommunikationstechnik und Bildverarbeitung erweitern den aktuellen Stand der Forschung und Technik. Die in den Beiträgen enthaltenen anschaulichen Beispiele aus dem Bereich der Automation setzen die Ergebnisse in den direkten Anwendungsbezug

    Design of Intellectual Property-Based Hardware Blocks Integrable with Embedded RISC Processors

    Get PDF
    The main focus of this thesis is to research methods, architecture, and implementation of hardware acceleration for a Reduced Instruction Set Computer (RISC) platform. The target platform is a single-core general-purpose embedded processor (the COFFEE core) which was developed by our group at Tampere University of Technology. The COFFEE core alone cannot meet the requirements of the modern applications due to the lack of several components of which the Memory Management Unit (MMU) is one of the prominent ones. Since the MMU is one of the main requirements of today’s processors, COFFEE with no MMU was not able to run an operating system. In the design of the MMU, we employed two additional micro-Translation-Lookaside Buffers (TLBs) to speed up the translation process, as well as minimizing congestions of the data/instruction address translations with a unified TLB. The MMU is tightly-coupled with the COFFEE RISC core through the Peripheral Control Block (PCB) interface of the core. The hardware implementation, alongside some optimization techniques and post synthesis results are presented, as well.Another intention of this work is to prepare a reconfigurable platform to send and receive data packets of the next generation wireless communications. Hence, we will further discuss a recently emerged wireless modulation technique known as Non-Contiguous Orthogonal Frequency Division Multiplexing (NC-OFDM), a promising technique to alleviate spectrum scarcity problem. However, one of the primary concerns in such systems is the synchronization. To that end, we developed a reconfigurable hardware component to perform as a synchronizer. The developed module exploits Partial Reconfiguration (PR) feature in order to reconfigure itself. Eventually, we will come up with several architectural choices for systems with different limiting factors such as power consumption, operating frequency, and silicon area. The synchronizer can be loosely-coupled via one of the available co-processor slots of the target processor, the COFFEE RISC core.In addition, we are willing to improve the versatility of the COFFEE core even in industrial use cases. Hence, we developed a reconfigurable hardware component capable of operating in the Controller Area Network (CAN) protocol. In the first step of this implementation, we mainly concentrate on receiving, decoding, and extracting the data segment of a CAN-based packet. Moreover, this hardware block can reconfigure itself on-the-fly to operate on different data frames. More details regarding hardware implementation issues, as well as post synthesis results are also presented. The CAN module is loosely-coupled with the COFFEE RISC processor through one of the available co-processor block
    corecore