1,771 research outputs found

    Power quality and electromagnetic compatibility: special report, session 2

    Get PDF
    The scope of Session 2 (S2) has been defined as follows by the Session Advisory Group and the Technical Committee: Power Quality (PQ), with the more general concept of electromagnetic compatibility (EMC) and with some related safety problems in electricity distribution systems. Special focus is put on voltage continuity (supply reliability, problem of outages) and voltage quality (voltage level, flicker, unbalance, harmonics). This session will also look at electromagnetic compatibility (mains frequency to 150 kHz), electromagnetic interferences and electric and magnetic fields issues. Also addressed in this session are electrical safety and immunity concerns (lightning issues, step, touch and transferred voltages). The aim of this special report is to present a synthesis of the present concerns in PQ&EMC, based on all selected papers of session 2 and related papers from other sessions, (152 papers in total). The report is divided in the following 4 blocks: Block 1: Electric and Magnetic Fields, EMC, Earthing systems Block 2: Harmonics Block 3: Voltage Variation Block 4: Power Quality Monitoring Two Round Tables will be organised: - Power quality and EMC in the Future Grid (CIGRE/CIRED WG C4.24, RT 13) - Reliability Benchmarking - why we should do it? What should be done in future? (RT 15

    Incremental learning for large-scale stream data and its application to cybersecurity

    Get PDF
    As many human currently depend on technologies to assist with daily tasks, there are more and more applications which have been developed to be fit in one small gadget such as smart phone and tablet. Thus, by carrying this small gadget alone, most of our tasks are able to be settled efficiently and fast. Until the end of 20th century, mobile phones are only used to call and to send short message service (sms). However, in early 21st century, a rapid revolution of communi�cation technology from mobile phone into smart phone has been seen in which the smart phone is equipped by 4G Internet line along with the telephone service provider line. Thus, the users are able to make a phone call, send messages using variety of application such as Whatsapp and Line, send email, serving websites, accessing maps and handling some daily tasks via online using online banking, online shopping and online meetings via video conferences. In previous years, if there are cases of missing children or missing cars, the victims would rely on the police investigation. But now, as easy as uploading a notification about the loss on Facebook and spread the news among Facebook users, there are more people are able to help in the search. Despite the advantages that can be obtained using these technologies, there are a group of irresponsible people who take advan�tage of current technologies for their own self-interest. Among the applications that are usually being used by almost Internet users and also are often misused by cyber criminals are email and websites. Therefore, we take this initiative to make enhancement in cyber security application to avoid the Internet users from being trapped and deceived by the trick of cyber criminals by developing detec�tion system of malicious spam email and Distributed Denial of Services (DDoS) 3773(53867 3(53867.1781.8781$0,1$+ iii backscatter. Imagine that a notice with a logo of Mobile Phone company is received by an email informing that the customer had recently run up a large mobile phone bill. A link regarding the bill is attached for him/her to find out the details. Since, the customer thinks that the billing might be wrong, thus the link is clicked. However, the link is directed to a webpage which displays a status that currently the webpage is under construction. Then the customer closes the page and thinking of to visit the website again at other time. Unfortunately, after a single click actually a malicious file is downloaded and installed without the customer aware of it. That malicious file most probably is a Trojan that capable to steal confidential information from victim’s computer. On the next day, when the same person is using the same computer to log in the online banking, all of a sudden find out that his/her money is lost totally. This is one of a worst case scenario of malicious spam email which is usually handled by cybersecurity field. Another different case of cybersecurity is the Distributed Denial of Services (DDoS) attack. Let say, Company X is selling flowers via online in which the market is from the local and international customer. The online business of Company X is running normally as usual, until a day before mother’s day, the webpage of Company X is totally down and the prospective customers could not open the webpage to make order to be sent specially for their beloved mother. Thus, the customers would search another company that sells the same item. The Company X server is down, most probably because of the DDoS attack where a junk traffic is sent to that company server which makes that server could not serve the request by the legitimate customers. This attack effect not only the profit of the company, but also reputation damage, regular customer turnover and productivity decline. Unfortunately, it is difficult for a normal user like us to detect malicious spam 377$ 3(53867$.1781.87810,10,1+ email or DDoS attack with naked eyes. It is because recently the spammers and attacker had improved their strategy so that the malicious email and the DDoS packets are hardly able to be differentiated with the normal email and data packets. Once the Social Engineering is used by the spammers to create relevant email content in the malicious spam email and when a new campaign of DDoS attack is launched by the attacker, no normal users are capable to distinguish the benign and malicious email or data packets. This is where my Ph.D project comes in handy. My Ph.d is focusing on constructing a detection system of malicious spam email and DDoS attack using a large number of dataset which are obtained by a server that collect double-bounce email and darknet for malicious spam email detection system and DDoS backscatter detection system, respectively. As many up-to-date data are used during the learning, the detection system would become more robust to the latest strategy of the cybercriminal. Therefore, the scenario mentioned above can be avoided by assisting the user with important information at the user-end such as malicious spam email filter or at the server firewall. First of all, the method to learn large-scale stream data must be solved before implementing it in the detection system. Therefore, in Chapter 2, the general learning strategy of large-scale data is introduced to be used in the cybersecurity applications which are discussed in Chapter 3 and Chapter 4, respectively. One of a critical criterion of the detection system is capable to learn fast because after the learning, the updated information needs to be passed to user to avoid the user from being deceived by the cybercriminal. To process large-scale data sequences, it is important to choose a suitable learning algorithm that is capable to learn in real time. Incremental learning has an ability to process large data in chunk and update the parameters after learning each chunk. Such type of learning keep and update only the minimum information on a classifier model. 3773(53867 3(53867.1781.8781$0,1$+ Therefore, it requires relatively small memory and short learning time. On the other hand, batch learning is not suitable because it needs to store all training data, which consume a large memory capacity. Due to the limited memory, it is certainly impossible to process online large-scale data sequences using the batch learning. Therefore, the learning of large-scale stream data should be conducted incrementally. This dissertation contains of five chapters. In Chapter 1, the concept of in�cremental learning is briefly described and basic theories on Resource Allocating Network (RAN) and conventional data selection method are discussed in this chapter. Besides that, the overview of this dissertation is also elaborated in this chapter. In Chapter 2, we propose a new algorithm based on incremental Radial Basis Function Network (RBFN) to accelerate the learning in stream data. The data sequences are represented as a large chunk size of data given continuously within a short time. In order to learn such data, the learning should be carried out incrementally. Since it is certainly impossible to learn all data in a short pe�riod, selecting essential data from a given chunk can shorten the learning time. In our method, we select data that are located in untrained or “not well-learned” region and discard data at trained or “well-learned” region. These regions are represented by margin flag. Each region is consisted of similar data which are near to each other. To search the similar data, the well-known LSH method pro�posed by Andoni et al. is used. The LSH method indeed has proven be able to quickly find similar objects in a large database. Moreover, we utilize the LSH ʼs properties; hash value and Hash Table to further reduced the processing time. A flag as a criterion to decide whether to choose or not the training data is added in the Hash Table and is updated in each chunk sequence. Whereas, the hash value of RBF bases that is identical with the hash value of the training data is used to select the RBF bases that is near to the training data. The performance results of 377$ 3(53867$.1781.87810,10,1+ vi the numerical simulation on nine UC Irvine (UCI) Machine Learning Repository datasets indicate that the proposed method can reduce the learning time, while keeping the similar accuracy rate to the conventional method. These results indi�cate that the proposed method can improve the RAN learning algorithm towards the large-scale stream data processing. In Chapter 3, we propose a new online system to detect malicious spam emails and to adapt to the changes of malicious URLs in the body of spam emails by updating the system daily. For this purpose, we develop an autonomous system that learns from double-bounce emails collected at a mail server. To adapt to new malicious campaigns, only new types of spam emails are learned by introducing an active learning scheme into a classifier model. Here, we adopt Resource Allocating Network with Locality Sensitive Hashing (RAN-LSH) as a classifier model with data selection. In this data selection, the same or similar spam emails that have already been learned are quickly searched for a hash table using Locally Sensitive Hashing, and such spam emails are discarded without learning. On the other hand, malicious spam emails are sometimes drastically changed along with a new arrival of malicious campaign. In this case, it is not appropriate to classify such spam emails into malicious or benign by a classifier. It should be analyzed by using a more reliable method such as a malware analyzer. In order to find new types of spam emails, an outlier detection mechanism is implemented in RAN-LSH. To analyze email contents, we adopt the Bag-of-Words (BoW) approach and generate feature vectors whose attributes are transformed based on the normalized term frequency-inverse document frequency. To evaluate the developed system, we use a dataset of double-bounce spam emails which are collected from March 1, 2013 to May 10, 2013. In the experiment, we study the effect of introducing the outlier detection in RAN-LSH. As a result, by introducing the outlier detection, we confirm that the detection accuracy is enhanced on 3773(53867 3(53867.1781.87810,10,1+ average over the testing period. In Chapter 4, we propose a fast Distributed Denial of Service (DDoS) backscat�ter detection system to detect DDoS backscatter from a combination of protocols and ports other than the following two labeled packets: Transmission Control Protocol (TCP) Port 80 (80/TCP) and User datagram Protocol (UDP) Port 53 (53/UDP). Usually, it is hard to detect DDoS backscatter from the unlabeled packets, where an expert is needed to analyze every packet manually. Since it is a costly approach, we propose a detection system using Resource Allocating Network (RAN) with data selection to select essential data. Using this method, the learning time is shorten, and thus, the DDoS backscatter can be detected fast. This detection system consists of two modules which are pre-processing and classifier. With the former module, the packets information are transformed into 17 feature-vectors. With the latter module, the RAN-LSH classifier is used, where only data located at untrained region are selected. The performance of the proposed detection system is evaluated using 9,968 training data from 80/TCP and 53/UDP, whereas 5,933 test data are from unlabeled packets which are col�lected from January 1st, 2013 until January 20th, 2014 at National Institute of Information and Communications Technology (NICT), Japan. The results indi�cate that detection system can detect the DDoS backscatter from both labeled and unlabeled packets with high recall and precision rate within a short time. Finally, in Chapter 5, we discussed the conclusions and the future work of our study: RAN-LSH classifier, malicious spam email detection system and DDoS backscatter detection system

    Multiple bottlenecks sorting criterion at initial sequence in solving permutation flow shop scheduling problem

    Get PDF
    This paper proposes a heuristic that introduces the application of bottleneck-based concept at the beginning of an initial sequence determination with the objective of makespan minimization. Earlier studies found that the scheduling activity become complicated when dealing with machine, m greater than 2, known as non-deterministic polynomial-time hardness (NP-hard). To date, the Nawaz-Enscore-Ham (NEH) algorithm is still recognized as the best heuristic in solving makespan problem in scheduling environment. Thus, this study treated the NEH heuristic as the highest ranking and most suitable heuristic for evaluation purpose since it is the best performing heuristic in makespan minimization. This study used the bottleneck-based approach to identify the critical processing machine which led to high completion time. In this study, an experiment involving machines (m =4) and n-job (n = 6, 10, 15, 20) was simulated in Microsoft Excel Simple Programming to solve the permutation flowshop scheduling problem. The overall computational results demonstrated that the bottleneck machine M4 performed the best in minimizing the makespan for all data set of problems

    On Deep Machine Learning Based Techniques for Electric Power Systems

    Get PDF
    This thesis provides deep machine learning-based solutions to real-time mitigation of power quality disturbances such as flicker, voltage dips, frequency deviations, harmonics, and interharmonics using active power filters (APF). In an APF the processing delays reduce the performance when the disturbance to be mitigated is tima varying. The the delays originate from software (response time delay) and hardware (reaction time delay). To reduce the response time delays of APFs, this thesis propose and investigate several different techniques. First a technique based on multiple synchronous reference frame (MSRF) and order-optimized exponential smoothing (ES) to decrease the settling time delay of lowpass filtering steps. To reduce the computational time, this method is implemented in a parallel processing using a graphics processing unit (GPU) to estimate the time-varying harmonics and interharmonics of currents. Furthermore, the MSRF and three machine learning-based solutions are developed to predict future values of voltage and current in electric power systems which can mitigate the effects of the response and reaction time delays of the APFs. In the first and second solutions, a Butterworth filter is used to lowpass filter the\ua0 dq\ua0 components, and linear prediction and long short-term memory (LSTM) are used to predict the filtered\ua0 dq\ua0 components. The third solution is an end-to-end ML-based method developed based on a combination of convolutional neural networks (CNN) and LSTM. The Simulink implementation of the proposed ML-based APF is carried out to compensate for the current waveform harmonics, voltage dips, and flicker in Simulink environment embedded AI computing system Jetson TX2.\ua0In another study, we propose Deep Deterministic Policy Gradient (DDPG), a reinforcement learning (RL) method to replace the controller loops and estimation blocks such as PID, MSRF, and lowpass filters in grid-forming inverters. In a conventional approach it is well recognized that the controller tuning in the differen loops are difficult as the tuning of one loop influence the performance in other parts due to interdependencies.In DDPG the control policy is derived by optimizing a reward function which measure the performance in a data-driven fashion based on extensive experiments of the inverter in a simulation environment.\ua0Compared to a PID-based control architecture, the DDPG derived control policy leads to a solution where the response and reaction time delays are decreased by a factor of five in the investigated example.\ua0Classification of voltage dips originating from cable faults is another topic addressed in this thesis work. The Root Mean Square (RMS) of the voltage dips is proposed as preprocessing step to ease the feature learning for the developed\ua0 LSTM based classifier. Once a cable faults occur, it need to be located and repaired/replaced in order to restore the grid operation. Due to the high importance of stability in the power generation of renewable energy sources, we aim to locate high impedance cable faults in DC microgrid clusters which is a challenging case among different types of faults. The developed Support Vector Machine (SVM) algorithm process the maximum amplitude and\ua0 di/dt\ua0 of the current waveform of the fault as features, and the localization task is carried out with\ua0 95 %\ua0 accuracy.\ua0Two ML-based solutions together with a two-step feature engineering method are proposed to classify Partial Discharges (PD) originating from pulse width modulation (PWM) excitation in high voltage power electronic devices. As a first step, maximum amplitude, time of occurrence, area under PD curve, and time distance of each PD are extracted as features of interest. The extracted features are concatenated to form patterns for the ML algorithms as a second step. The suggested feature classification using the proposed ML algorithms resulted in\ua0 95.5 %\ua0 and\ua0 98.3 %\ua0\ua0 accuracy on a test data set using ensemble bagged decision trees and LSTM networks

    Power quality issues of 3MW direct-driven PMSG wind turbine

    Get PDF
    This paper presents power quality issues of a grid connected wind generation system with a MW-class direct-driven permanent magnet synchronous generator (PMSG). A variable speed wind turbine model was simulated and developed with the simulation tool of PSCAD/EMTDC. The model includes a wind turbine with one mass-model drive train model, a PMSG model and a full-scale voltage source back to back PWM converter. The converter controller model is employed in the dq-synchronous rotating reference frame and applied to both generator and grid sides. To achieve maximum power point tracking, a tip speed ratio method is applied in machine side, whereas DC voltage control is applied in grid side to achieve constant DC voltage. Due to wind fluctuation and power oscillation as a result of wind shear and tower shadow effects (3p), there will be a fluctuation in the output power and voltage. The concerned power quality issues in this work are Harmonics, power fluctuation and flicker emission. The measurements will be carried out under different wind speed and circumstances

    Power quality disturbances assessment during unintentional islanding scenarios. A contribution to voltage sag studies

    Get PDF
    This paper presents a novel voltage sag topology that occurs during an unintentional islanding operation (IO) within a distribution network (DN) due to large induction motors (IMs). When a fault occurs, following the circuit breaker (CB) fault clearing, transiently, the IMs act as generators due to their remanent kinetic energy until the CB reclosing takes place. This paper primarily contributes to voltage sag characterization. Therefore, this novel topology is presented, analytically modelled and further validated. It is worth mentioning that this voltage sag has been identified in a real DN in which events have been recorded for two years. The model validation of the proposed voltage sag is done via digital simulations with a model of the real DN implemented in Matlab considering a wide range of scenarios. Both simulations and field measurements confirm the voltage sag analytical expression presented in this paper as well as exhibiting the high accuracy achieved in the three-phase model adopted.Postprint (published version

    Power Quality

    Get PDF
    Electrical power is becoming one of the most dominant factors in our society. Power generation, transmission, distribution and usage are undergoing signifi cant changes that will aff ect the electrical quality and performance needs of our 21st century industry. One major aspect of electrical power is its quality and stability – or so called Power Quality. The view on Power Quality did change over the past few years. It seems that Power Quality is becoming a more important term in the academic world dealing with electrical power, and it is becoming more visible in all areas of commerce and industry, because of the ever increasing industry automation using sensitive electrical equipment on one hand and due to the dramatic change of our global electrical infrastructure on the other. For the past century, grid stability was maintained with a limited amount of major generators that have a large amount of rotational inertia. And the rate of change of phase angle is slow. Unfortunately, this does not work anymore with renewable energy sources adding their share to the grid like wind turbines or PV modules. Although the basic idea to use renewable energies is great and will be our path into the next century, it comes with a curse for the power grid as power fl ow stability will suff er. It is not only the source side that is about to change. We have also seen signifi cant changes on the load side as well. Industry is using machines and electrical products such as AC drives or PLCs that are sensitive to the slightest change of power quality, and we at home use more and more electrical products with switching power supplies or starting to plug in our electric cars to charge batt eries. In addition, many of us have begun installing our own distributed generation systems on our rooft ops using the latest solar panels. So we did look for a way to address this severe impact on our distribution network. To match supply and demand, we are about to create a new, intelligent and self-healing electric power infrastructure. The Smart Grid. The basic idea is to maintain the necessary balance between generators and loads on a grid. In other words, to make sure we have a good grid balance at all times. But the key question that you should ask yourself is: Does it also improve Power Quality? Probably not! Further on, the way how Power Quality is measured is going to be changed. Traditionally, each country had its own Power Quality standards and defi ned its own power quality instrument requirements. But more and more international harmonization efforts can be seen. Such as IEC 61000-4-30, which is an excellent standard that ensures that all compliant power quality instruments, regardless of manufacturer, will produce of measurement instruments so that they can also be used in volume applications and even directly embedded into sensitive loads. But work still has to be done. We still use Power Quality standards that have been writt en decades ago and don’t match today’s technology any more, such as fl icker standards that use parameters that have been defi ned by the behavior of 60-watt incandescent light bulbs, which are becoming extinct. Almost all experts are in agreement - although we will see an improvement in metering and control of the power fl ow, Power Quality will suff er. This book will give an overview of how power quality might impact our lives today and tomorrow, introduce new ways to monitor power quality and inform us about interesting possibilities to mitigate power quality problems. Regardless of any enhancements of the power grid, “Power Quality is just compatibility” like my good old friend and teacher Alex McEachern used to say. Power Quality will always remain an economic compromise between supply and load. The power available on the grid must be suffi ciently clean for the loads to operate correctly, and the loads must be suffi ciently strong to tolerate normal disturbances on the grid

    Voltage Sag Waveform Using SagWave GUI

    Get PDF

    Development of a grid emulator for network integration studies

    Get PDF
    Includes bibliographical references.The economic and environmental side effects of fossil fuels have forced governments and authorities to investigate sustainable solutions. Main interest is focused on environment friendly benefits, provided by renewable energy sources. The growth rate of these energy sources has increased remarkably in the past few years. Correspondingly the research and development in the field of power electronics has also increased, especially in medium voltage and high power grid connected systems. The grid behaviour of the renewable energy systems is heavily influenced by the control techniques of these systems. For further development of these control methods the most basic and conventional way is to simulate, test and prove the system performance on a down-scaled lab test bench. The objective of this thesis is to develop a laboratory test bench grid emulator for network integration studies. Design and performance are investigated by introducing several kinds of unbalanced voltage conditions to test the behavior of connected systems. Voltage dips and swells are implemented to test the system’s performance

    Intelligent voltage dip mitigation in power networks with distributed generation

    Get PDF
    Includes bibliographical references.The need for ensuring good power quality (PQ) cannot be over-emphasized in electrical power system operation and management. PQ problem is associated with any electrical distribution and utilization system that experiences any voltage, current or frequency deviation from normal operation. In the current power and energy scenario, voltage-related PQ disturbances like voltage dips are a fact which cannot be eliminated from electrical power systems since electrical faults, and disturbances are stochastic in nature. Voltage dip tends to lead to malfunction or shut down of costly and mandatory equipment and appliances in consumers’ systems causing significant financial losses for domestic, commercial and industrial consumers. It accounts for the disruption of both the performance and operation of sensitive electrical and electronic equipment, which reduces the efficiency and the productivity of power utilities and consumers across the globe. Voltage dips are usually experienced as a result of short duration reduction in the r.m.s. (r.m.s.- root mean square) value of the declared or nominal voltage at the power frequency and is usually followed by recovery of the voltage dip after few seconds. The IEEE recommended practice for monitoring electric power quality (IEEE Std. 1159-2009, revised version of June 2009), provides definitions to label an r.m.s. voltage disturbance based upon its duration and voltage magnitude. These disturbances can be classified into transient events such as voltage dips, swells and spikes. Other long duration r.m.s. voltage variations are mains failures, interruption, harmonic voltage distortion and steady-state overvoltages and undervoltages. This PhD research work deals with voltage dip phenomena only. Initially, the present power network was not designed to accommodate renewable distributed generation (RDG) units. The advent and deployment of RDG over recent years and high penetration of RDG has made the power network more complex and vulnerable to PQ disturbances. It is a well-known fact that the degree of newly introduced RDG has increased rapidly and growing further because of several reasons, which include the need to reduce environmental pollution and global warming caused by emission of carbon particles and greenhouse gases, alleviating transmission congestion and loss reduction. RDG ancillary services support especially voltage and reactive power support in electricity networks are currently being recognized, researched and found to be quite useful in voltage dip mitigation
    corecore