363,419 research outputs found

    Introducing High School Students to Version Control, Continuous Integration, and Quality Assurance

    Full text link
    Software Engineering concepts such as version control, continuous integration, and unit testing are often not presented in college computer science curriculums until the third year of study, after completing several semesters of programming courses. Throughout the summer of 2023, two high school students volunteered in our lab at Wayne State University where I'm a graduate research assistant and Ph.D. student in computer science. The students had taken AP Computer Science but had no prior experience with software engineering or software testing. This paper documents our experience devising a group project to teach the requisite software engineering skills to implement automated tests that meaningfully contribute to open-source scientific computing projects developed in connection with our lab. We describe the concepts covered, tools used, and software tests written in this early introduction to software engineering while maintaining shared emphases on education and the deployment of our work.Comment: 6 pages, 3 figure

    ICSEA 2021: the sixteenth international conference on software engineering advances

    Get PDF
    The Sixteenth International Conference on Software Engineering Advances (ICSEA 2021), held on October 3 - 7, 2021 in Barcelona, Spain, continued a series of events covering a broad spectrum of software-related topics. The conference covered fundamentals on designing, implementing, testing, validating and maintaining various kinds of software. The tracks treated the topics from theory to practice, in terms of methodologies, design, implementation, testing, use cases, tools, and lessons learnt. The conference topics covered classical and advanced methodologies, open source, agile software, as well as software deployment and software economics and education. The conference had the following tracks: Advances in fundamentals for software development Advanced mechanisms for software development Advanced design tools for developing software Software engineering for service computing (SOA and Cloud) Advanced facilities for accessing software Software performance Software security, privacy, safeness Advances in software testing Specialized software advanced applications Web Accessibility Open source software Agile and Lean approaches in software engineering Software deployment and maintenance Software engineering techniques, metrics, and formalisms Software economics, adoption, and education Business technology Improving productivity in research on software engineering Trends and achievements Similar to the previous edition, this event continued to be very competitive in its selection process and very well perceived by the international software engineering community. As such, it is attracting excellent contributions and active participation from all over the world. We were very pleased to receive a large amount of top quality contributions. We take here the opportunity to warmly thank all the members of the ICSEA 2021 technical program committee as well as the numerous reviewers. The creation of such a broad and high quality conference program would not have been possible without their involvement. We also kindly thank all the authors that dedicated much of their time and efforts to contribute to the ICSEA 2021. We truly believe that thanks to all these efforts, the final conference program consists of top quality contributions. This event could also not have been a reality without the support of many individuals, organizations and sponsors. We also gratefully thank the members of the ICSEA 2021 organizing committee for their help in handling the logistics and for their work that is making this professional meeting a success. We hope the ICSEA 2021 was a successful international forum for the exchange of ideas and results between academia and industry and to promote further progress in software engineering research

    Bringing Light into the Dark - Improving Students’ Black-Box Testing Competencies using Game-Design Elements

    Get PDF
    As software becomes increasingly complex, there is a growing need to enhance quality assurance in software engineering. However, the lack of qualified human resources is a barrier to performing software testing activities in software companies. At the same time, software testing can be considered a tedious task and is often not done at the necessary level of detail, e.g., designing test cases. However, it is crucial for novice programmers and testers to acquire and improve their testing competencies, and to utilize testing techniques, e.g., black-box testing. Teaching software testing is often based on theoretical instructions, resulting in limited practical experience. As a result, students may not develop the necessary testing mindset, highlighting the need for more extensive software testing education. To address this issue, this paper utilizes a design science research approach to implement a gamified learning system that promotes black-box testing competencies with empirical insights from a field test

    Report on the Second Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE2)

    Get PDF
    This technical report records and discusses the Second Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE2). The report includes a description of the alternative, experimental submission and review process, two workshop keynote presentations, a series of lightning talks, a discussion on sustainability, and five discussions from the topic areas of exploring sustainability; software development experiences; credit & incentives; reproducibility & reuse & sharing; and code testing & code review. For each topic, the report includes a list of tangible actions that were proposed and that would lead to potential change. The workshop recognized that reliance on scientific software is pervasive in all areas of world-leading research today. The workshop participants then proceeded to explore different perspectives on the concept of sustainability. Key enablers and barriers of sustainable scientific software were identified from their experiences. In addition, recommendations with new requirements such as software credit files and software prize frameworks were outlined for improving practices in sustainable software engineering. There was also broad consensus that formal training in software development or engineering was rare among the practitioners. Significant strides need to be made in building a sense of community via training in software and technical practices, on increasing their size and scope, and on better integrating them directly into graduate education programs. Finally, journals can define and publish policies to improve reproducibility, whereas reviewers can insist that authors provide sufficient information and access to data and software to allow them reproduce the results in the paper. Hence a list of criteria is compiled for journals to provide to reviewers so as to make it easier to review software submitted for publication as a “Software Paper.

    Customization Of Requirements Modeling Tool For Software Engineering Education

    Get PDF
    In the developing a software, there is a part of modeling the requirements. Modeling the requirements usefully to communicate all stakeholders and as a blueprint. There are modeling tools used to model the requirements such as Rational Rose, Enterprise Architect, Magic Draw, StarUML, ArgoUML, UML Designer, etc. Modeling tools that available gets more complicated to use and when compared majority tools more emphasis on modeling for industrial rather than education. In this study perform the customization tool for software engineering education and evaluate effectiveness the custom tool. The research methodology in this study is questionnaire, interview and literature review related with the study. The custom tool focus only on use case diagram including use case elements and use case description. Development the system start with elicited the requirements of the system, hardware requirements, and software requirements. The testing stage performed to get evaluation from the system developed. In the testing performed test the functional of the system. Evaluation obtained that the system usefulness, easy to use, and easy to learning. Besides, software engineering students are involved satisfied with the system

    ICSEA 2022: the seventeenth international conference on software engineering advances

    Get PDF
    The Seventeenth International Conference on Software Engineering Advances (ICSEA 2022), held between October 16th and October 20th, 2022, continued a series of events covering a broad spectrum of software-related topics. The conference covered fundamentals on designing, implementing, testing, validating and maintaining various kinds of software. Several tracks were proposed to treat the topics from theory to practice, in terms of methodologies, design, implementation, testing, use cases, tools, and lessons learned. The conference topics covered classical and advanced methodologies, open source, agile software, as well as software deployment and software economics and education. Other advanced aspects are related to on-time practical aspects, such as run-time vulnerability checking, rejuvenation process, updates partial or temporary feature deprecation, software deployment and configuration, and on-line software updates. These aspects trigger implications related to patenting, licensing, engineering education, new ways for software adoption and improvement, and ultimately, to software knowledge management. There are many advanced applications requiring robust, safe, and secure software: disaster recovery applications, vehicular systems, biomedical-related software, biometrics related software, mission critical software, E-health related software, crisis-situation software. These applications require appropriate software engineering techniques, metrics and formalisms, such as, software reuse, appropriate software quality metrics, composition and integration, consistency checking, model checking, provers and reasoning. The nature of research in software varies slightly with the specific discipline researchers work in, yet there is much common ground and room for a sharing of best practice, frameworks, tools, languages and methodologies. Despite the number of experts we have available, little work is done at the meta level, that is examining how we go about our research, and how this process can be improved. There are questions related to the choice of programming language, IDEs and documentation styles and standard. Reuse can be of great benefit to research projects yet reuse of prior research projects introduces special problems that need to be mitigated. The research environment is a mix of creativity and systematic approach which leads to a creative tension that needs to be managed or at least monitored. Much of the coding in any university is undertaken by research students or young researchers. Issues of skills training, development and quality control can have significant effects on an entire department. In an industrial research setting, the environment is not quite that of industry as a whole, nor does it follow the pattern set by the university. The unique approaches and issues of industrial research may hold lessons for researchers in other domains. We take here the opportunity to warmly thank all the members of the ICSEA 2022 technical program committee, as well as all the reviewers. The creation of such a high-quality conference program would not have been possible without their involvement. We also kindly thank all the authors who dedicated much of their time and effort to contribute to ICSEA 2022. We truly believe that, thanks to all these efforts, the final conference program consisted of top-quality contributions. We also thank the members of the ICSEA 2022 organizing committee for their help in handling the logistics of this event. We hope that ICSEA 2022 was a successful international forum for the exchange of ideas and results between academia and industry and for the promotion of progress in software engineering advances

    Engembangan Database Evaluasi Diri Jurusan Pendidikan Teknik Boga dan Busana Ft Uny

    Full text link
    This research aims at develping database of self evaluation among the students and lecturers of Food and Clothing Department with empirical testing. This database was implemented to five study programs, i.e. Food Engineering Education (S1), Clothing Engineering Education (S1), Food Engineering (DIII), Clothing Engineering (DIII) and Make Up & Beauty (DIII). This research was using Reseach and Development Approach. The development of database was conducted through need analysis, planning, making program prototype, testing and evaluation. The software program to make database was using Microsoft Access 2007. The source of data was from the lecturers and the students. The data collection method was using need analysis data, documentation for planning, and datbase prototype creation, observation for program testing. Data analysis was conducted through qualitative descriptive analysis according to the research stages. The finding was in the form of database of self-evaluation consisted of students and lecturers data from Food and Clothing Department, which had been tested emphirically. The development stage had completed until the making of prototype of electronic database. The development procces had conducted throgh some stages, i.e. analysis, designing, implementation and evaluation

    Exploiting Adaptive and Collaborative AUV Autonomy for Detection and Characterization of Internal Waves

    Get PDF
    Advances in the fields of autonomy software and environmental sampling techniques for autonomous underwater vehicles (AUVs) have recently allowed for the merging of oceanographic data collection with the testing of emerging marine technology. The Massachusetts Institute of Technology (MIT) Laboratory for Autonomous Marine Sensing Systems (LAMSS) group conducted an Internal Wave Detection Experiment in August 2010 with these advances in mind. The goal was to have multiple AUVs collaborate autonomously through onboard autonomy software and real-time underwater acoustic communication to monitor for the presence of internal waves by adapting to changes in the environment (specifically the temperature variations near the thermocline/pycnocline depth). The experimental setup, implementation, data, deployment results, and internal wave detection and quantification results are presented in this paper.United States. Office of Naval Research (Grant N00014-08-1-0013)United States. Dept. of DefenseUnited States. Air Force Office of Scientific ResearchAmerican Society for Engineering Education. National Defense Science and Engineering Graduate Fellowship (32 CFR 168a
    • 

    corecore