5,057 research outputs found

    A holistic integrated dynamic design and modelling approach applied to the development of ultraprecision micro-milling machines

    Get PDF
    Ultraprecision machines with small footprints or micro-machines are highly desirable for micro-manufacturing high-precision micro-mechanical components. However, the development of the machines is still at the nascent stage by working on an individual machine basis and hence lacks generic scientific approach and design guidelines. Using computer models to predict the dynamic performance of ultraprecision machine tools can help manufacturers substantially reduce the lead time and cost of developing new machines. Furthermore, the machine dynamic performance depends not only upon the mechanical structure and components but also the control system and electronic drives. This paper proposed a holistic integrated dynamic design and modelling approach, which supports analysis and optimization of the overall machine dynamic performance at the early design stage. Based on the proposed approach the modelling and simulation process on a novel 5-axis bench-top ultraprecision micro-milling machine tool – UltraMill – is presented. The modelling and simulation cover the dynamics of the machine structure, moving components, control system and the machining process, and are used to predict the overall machine performance of two typical configurations. Preliminary machining trials have been carried out and provided the evidence of the approach being helpful to assure the machine performing right at the first setup

    Software Process Dynamics: Modeling, Simulation and Improvement

    Get PDF
    The aim of this chapter is to introduce the reader to the dynamics of the software process, the ways to represent and formalize it, and how it can be integrated with other techniques to facilitate, among other things, process improvement. In order to achieve this goal, different approaches of software process modeling and simulation will be introduced, analyzing their pros and cons. Then, continuous modeling will be used as the modeling approach to build software process models that work in the qualitative and quantitative fields, assessing the decision-making process and the software process improvement arena. The integration of this approach with current process assessment models (such as CMM), static and algorithmic models (such as traditional models used in the estimation process) and the design of a metrics collection program which is triggered by the actual process of model building will also be described in the chapter.Comisión Interministerial de Ciencia y Tecnología (CICYT) TIN2004-06689-C03-0

    Review of the mathematical foundations of data fusion techniques in surface metrology

    Get PDF
    The recent proliferation of engineered surfaces, including freeform and structured surfaces, is challenging current metrology techniques. Measurement using multiple sensors has been proposed to achieve enhanced benefits, mainly in terms of spatial frequency bandwidth, which a single sensor cannot provide. When using data from different sensors, a process of data fusion is required and there is much active research in this area. In this paper, current data fusion methods and applications are reviewed, with a focus on the mathematical foundations of the subject. Common research questions in the fusion of surface metrology data are raised and potential fusion algorithms are discussed

    Developing an inter-enterprise alignment maturity model: research challenges and solutions

    Get PDF
    Business-IT alignment is pervasive today, as organizations strive to achieve competitive advantage. Like in other areas, e.g., software development, maintenance and IT services, there are maturity models to assess such alignment. Those models, however, do not specifically address the aspects needed for achieving alignment between business and IT in inter-enterprise settings. In this paper, we present the challenges we face in the development of an inter-enterprise alignment maturity model, as well as the current solutions to counter these problems

    Improving software process maturity through dynamic modeling and simulation

    Get PDF
    Los modelos de procesos actuales como CMM, SPICE y otros recomiendan la aplicación de control estadístico y de guías de métricas para la definición, implementación y posterior evaluación de diferentes mejoras del proceso. Sin embargo, precisamente en este contexto no se ha considerado lo suficiente el modelado cuantitativo, reconocido en otras áreas como un elemento esencial para la adquisición de conocimiento. En este trabajo se describe la base conceptual y fundamental utilizada para el desarrollo de un marco enfocado a la mejora de procesos software que combina las técnicas de estimación tradicionales con la utilización extensiva de modelos dinámicos de simulación como herramienta para asesorar en el proceso de evolución entre los diferentes niveles de madurez propuestos por el modelo de referencia CMM. Tras la necesaria introducción a los conceptos fundamentales del modelado y simulación del proceso software y la justificación para la creación de dicho marco, se abordan las cuestiones fundamentales para su desarrollo, tales como el enfoque conceptual y su estructura, prestando especial atención al paradigma de desarrollo de los modelos dinámicos de simulación que le dan soporte.Current software process models (CMM, SPICE, etc.) strongly recommend the application of statistical control and measure guides to define, implement and evaluate the effects of different process improvements. However, whilst quantitative modelling has been widely used in other fields, it has not been considered enough in the field of software process improvement. During the last decade software process simulation has been used to address a wide diversity of management problems. Some of these problems are related to strategic management, technology adoption, understanding, training and learning, and risk management, among others. In this work a dynamic integrated framework for software process improvement is presented. This framework combines traditional estimation models with an intensive utilisation of dynamic simulation models of software process. The aim of this framework is to support a qualitative and quantitative assessment for software process improvement and decision making to achieve a higher software development process capability according to the Capability Maturity Model. The concepts underlying this framework have been implemented in a software process improvement tool that has been used in a local software organisation. The results obtained and the lessons learned are also presented in this paper.Comisión Interministerial de Ciencia y Tecnología (CICYT) TIC2001-1143-C03-0

    An Evaluation of the Sustainability of Global Tuna Stocks Relative to Marine Stewardship Council Criteria

    Get PDF
    The Marine Stewardship Council (MSC) has established a program whereby a fishery may be certified as being sustainable. The sustainability of a fishery is defined by MSC criteria which are embodied in three Principles: relating to the status of the stock, the ecosystem of which the stock is a member and the fishery management system. Since many of these MSC criteria are comparable for global tuna stocks, the MSC scoring system was used to evaluate nineteen stocks of tropical and temperate tunas throughout the world and to evaluate the management systems of the Regional Fishery Management Organizations (RFMO) associated with these stocks

    An Integrated Framework for Simulation-based Software Process Improvement

    Get PDF
    In this paper we present an integrated framework for software process improvement according to CMM. The framework is double-integrated. First, it is based on the systematic integration of dynamic modules to build a dynamic model to model each maturity level proposed in the reference model. As a consequence, a hierarchical set of dynamic models is developed following the same hierarchy of levels suggested in CMM. Second, the dynamic models of the framework are integrated with the use of different static techniques commonly used in planning, control, and process evaluation. The paper describes the reasons found to follow this approach, the integration process of models and techniques, the implementation of the framework, and shows an example of how it can be used in a software process improvement regarding the cost of software quality.CICYT TIC2001-1143-C03-0

    A Dynamic Integrated Framework for Software Process Improvement

    Get PDF
    Current software process models (CMM, SPICE, etc.) strongly recommend the application of statistical control and measure guides to define, implement, and evaluate the effects of different process improvements. However, whilst quantitative modeling has been widely used in other fields, it has not been considered enough in the field of software process improvement. During the last decade software process simulation has been used to address a wide diversity of management problems. Some of these problems are related to strategic management, technology adoption, understanding, training and learning, and risk management, among others. In this work a dynamic integrated framework for software processimprovement ispres ented. Thisframework combinestraditional estimation models with an intensive utilization of dynamic simulation models of the software process. The aim of this framework is to support a qualitative and quantitative assessment for software process improvement and decision making to achieve a higher software development process capability according to the Capability Maturity Model. The conceptsunderlying thisframework have been implemented in a software process improvement tool that has been used in a local software organization. The results obtained and the lessons learned are also presented in this paperCICYT TIC2001-1143-C03-0
    corecore