457,990 research outputs found

    Calculation Methods for Thermoelectric Generator Performance

    Get PDF
    This chapter aims to build one-dimensional thermoelectric model for device-level thermoelectric generator (TEG) performance calculation and prediction under steady heat transfer. Model concept takes into account Seebeck, Peltier, Thomson effects, and Joule conduction heat. Thermal resistances between heat source, heat sink, and thermocouple are also considered. Then, model is simplified to analyze influences of basic thermal and electrical parameters on TEG performance, when Thomson effect is neglected. At last, an experimental setup is introduced to gauge the output power and validate the model. Meantime, TEG simulation by software ANSYS is introduced briefly

    Fine-grained code changes and bugs: Improving bug prediction

    Full text link
    Software development and, in particular, software maintenance are time consuming and require detailed knowledge of the structure and the past development activities of a software system. Limited resources and time constraints make the situation even more difficult. Therefore, a significant amount of research effort has been dedicated to learning software prediction models that allow project members to allocate and spend the limited resources efficiently on the (most) critical parts of their software system. Prominent examples are bug prediction models and change prediction models: Bug prediction models identify the bug-prone modules of a software system that should be tested with care; change prediction models identify modules that change frequently and in combination with other modules, i.e., they are change coupled. By combining statistical methods, data mining approaches, and machine learning techniques software prediction models provide a structured and analytical basis to make decisions.Researchers proposed a wide range of approaches to build effective prediction models that take into account multiple aspects of the software development process. They achieved especially good prediction performance, guiding developers towards those parts of their system where a large share of bugs can be expected. For that, they rely on change data provided by version control systems (VCS). However, due to the fact that current VCS track code changes only on file-level and textual basis most of those approaches suffer from coarse-grained and rather generic change information. More fine-grained change information, for instance, at the level of source code statements, and the type of changes, e.g., whether a method was renamed or a condition expression was changed, are often not taken into account. Therefore, investigating the development process and the evolution of software at a fine-grained change level has recently experienced an increasing attention in research.The key contribution of this thesis is to improve software prediction models by using fine-grained source code changes. Those changes are based on the abstract syntax tree structure of source code and allow us to track code changes at the fine-grained level of individual statements. We show with a series of empirical studies using the change history of open-source projects how prediction models can benefit in terms of prediction performance and prediction granularity from the more detailed change information.First, we compare fine-grained source code changes and code churn, i.e., lines modified, for bug prediction. The results with data from the Eclipse platform show that fine grained-source code changes significantly outperform code churn when classifying source files into bug- and not bug-prone, as well as when predicting the number of bugs in source files. Moreover, these results give more insights about the relation of individual types of code changes, e.g., method declaration changes and bugs. For instance, in our dataset method declaration changes exhibit a stronger correlation with the number of bugs than class declaration changes.Second, we leverage fine-grained source code changes to predict bugs at method-level. This is beneficial as files can grow arbitrarily large. Hence, if bugs are predicted at the level of files a developer needs to manually inspect all methods of a file one by one until a particular bug is located.Third, we build models using source code properties, e.g., complexity, to predict whether a source file will be affected by a certain type of code change. Predicting the type of changes is of practical interest, for instance, in the context of software testing as different change types require different levels of testing: While for small statement changes local unit-tests are mostly sufficient, API changes, e.g., method declaration changes, might require system-wide integration-tests which are more expensive. Hence, knowing (in advance) which types of changes will most likely occur in a source file can help to better plan and develop tests, and, in case of limited resources, prioritize among different types of testing.Finally, to assist developers in bug triaging we compute prediction models based on the attributes of a bug report that can be used to estimate whether a bug will be fixed fast or whether it will take more time for resolution.The results and findings of this thesis give evidence that fine-grained source code changes can improve software prediction models to provide more accurate results

    Class-Level Refactoring Prediction by Ensemble Learning with Various Feature Selection Techniques

    Get PDF
    Background: Refactoring is changing a software system without affecting the software functionality. The current researchers aim i to identify the appropriate method(s) or class(s) that needs to be refactored in object-oriented software. Ensemble learning helps to reduce prediction errors by amalgamating different classifiers and their respective performances over the original feature data. Other motives are added in this paper regarding several ensemble learners, errors, sampling techniques, and feature selection techniques for refactoring prediction at the class level. Objective: This work aims to develop an ensemble-based refactoring prediction model with structural identification of source code metrics using different feature selection techniques and data sampling techniques to distribute the data uniformly. Our model finds the best classifier after achieving fewer errors during refactoring prediction at the class level. Methodology: At first, our proposed model extracts a total of 125 software metrics computed from object-oriented software systems processed for a robust multi-phased feature selection method encompassing Wilcoxon significant text, Pearson correlation test, and principal component analysis (PCA). The proposed multi-phased feature selection method retains the optimal features characterizing inheritance, size, coupling, cohesion, and complexity. After obtaining the optimal set of software metrics, a novel heterogeneous ensemble classifier is developed using techniques such as ANN-Gradient Descent, ANN-Levenberg Marquardt, ANN-GDX, ANN-Radial Basis Function; support vector machine with different kernel functions such as LSSVM-Linear, LSSVM-Polynomial, LSSVM-RBF, Decision Tree algorithm, Logistic Regression algorithm and extreme learning machine (ELM) model are used as the base classifier. In our paper, we have calculated four different errors i.e., Mean Absolute Error (MAE), Mean magnitude of Relative Error (MORE), Root Mean Square Error (RMSE), and Standard Error of Mean (SEM). Result: In our proposed model, the maximum voting ensemble (MVE) achieves better accuracy, recall, precision, and F-measure values (99.76, 99.93, 98.96, 98.44) as compared to the base trained ensemble (BTE) and it experiences less errors (MAE = 0.0057, MORE = 0.0701, RMSE = 0.0068, and SEM = 0.0107) during its implementation to develop the refactoring model. Conclusions: Our experimental result recommends that MVE with upsampling can be implemented to improve the performance of the refactoring prediction model at the class level. Furthermore, the performance of our model with different data sampling techniques and feature selection techniques has been shown in the form boxplot diagram of accuracy, F-measure, precision, recall, and area under the curve (AUC) parameters.publishedVersio

    Seer: a lightweight online failure prediction approach

    Get PDF
    Online failure prediction aims to predict the manifestation of failures at runtime before the failures actually occur. Existing online failure prediction approaches typically operate on data which is either directly reported by the system under test or directly observable from outside system executions. These approaches generally refrain themselves from collecting internal execution data that can further improve the prediction quality. One reason behind this general trend is due to the runtime overhead cost incurred by the measurement instruments that are required to collect the data. In this work we conjecture that large cost reductions in collecting internal execution data for online failure prediction can derive from reducing the cost of the measurement instruments, while still supporting acceptable levels of prediction quality. To evaluate this conjecture, we present a lightweight online failure prediction approach, called Seer. Seer uses fast hardware performance counters to perform most of the data collection work. The data is augmented with further data collected by a minimal amount of software instrumentation that is added to the systems software. We refer to the data collected in this manner as hybrid spectra. We applied the proposed approach to three widely used open source subject applications and evaluated it by comparing and contrasting three types of hybrid spectra and two types of traditional software spectra. At the lowest level of runtime overheads attained in the experiments, the hybrid spectra predicted the failures about half way through the executions with an F-measure of 0.77 and a runtime overhead of 1.98%, on average. Comparing hybrid spectra to software spectra, we observed that, for comparable runtime overhead levels, the hybrid spectra provided significantly better prediction accuracies and earlier warnings for failures than the software spectra. Alternatively, for comparable accuracy levels, the hybrid spectra incurred significantly less runtime overheads and provided earlier warnings

    On the Documentation of Refactoring Types

    Get PDF
    Commit messages are the atomic level of software documentation. They provide a natural language description of the code change and its purpose. Messages are critical for software maintenance and program comprehension. Unlike documenting feature updates and bug fixes, little is known about how developers document their refactoring activities. Specifically, developers can perform multiple refactoring operations, including moving methods, extracting classes, renaming attributes, for various reasons, such as improving software quality, managing technical debt, and removing defects. Yet, there is no systematic study that analyzes the extent to which the documentation of refactoring accurately describes the refactoring operations performed at the source code level. Therefore, this paper challenges the ability of refactoring documentation, written in commit messages, to adequately predict the refactoring types, performed at the commit level. Our analysis relies on the text mining of commit messages to extract the corresponding features (i.e., keywords) that better represent each class (i.e., refactoring type). The extraction of text patterns, specific to each refactoring type (e.g., rename, extract, move, inline, etc.) allows the design of a model that verifies the consistency of these patterns with their corresponding refactoring. Such verification process can be achieved via automatically predicting, for a given commit, the method-level type of refactoring being applied, namely Extract Method, Inline Method, Move Method, Pull-up Method, Push-down Method, and Rename Method. We compared various classifiers, and a baseline keyword-based approach, in terms of their prediction performance, using a dataset of 5004 commits. Our main findings show that the complexity of refactoring type prediction varies from one type to another. Rename Method and Extract Method were found to be the best documented refactoring activities, while Pull-up Method, and Push-down Method were the hardest to be identified via textual descriptions. Such findings bring the attention of developers to the necessity of paying more attention to the documentation of these types

    Enhanced Bug Prediction in JavaScript Programs with Hybrid Call-Graph Based Invocation Metrics

    Get PDF
    Bug prediction aims at finding source code elements in a software system that are likely to contain defects. Being aware of the most error-prone parts of the program, one can efficiently allocate the limited amount of testing and code review resources. Therefore, bug prediction can support software maintenance and evolution to a great extent. In this paper, we propose a function level JavaScript bug prediction model based on static source code metrics with the addition of a hybrid (static and dynamic) code analysis based metric of the number of incoming and outgoing function calls (HNII and HNOI). Our motivation for this is that JavaScript is a highly dynamic scripting language for which static code analysis might be very imprecise; therefore, using a purely static source code features for bug prediction might not be enough. Based on a study where we extracted 824 buggy and 1943 non-buggy functions from the publicly available BugsJS dataset for the ESLint JavaScript project, we can confirm the positive impact of hybrid code metrics on the prediction performance of the ML models. Depending on the ML algorithm, applied hyper-parameters, and target measures we consider, hybrid invocation metrics bring a 2–10% increase in model performances (i.e., precision, recall, F-measure). Interestingly, replacing static NOI and NII metrics with their hybrid counterparts HNOI and HNII in itself improves model performances; however, using them all together yields the best results

    Transfer Learning for Improving Model Predictions in Highly Configurable Software

    Full text link
    Modern software systems are built to be used in dynamic environments using configuration capabilities to adapt to changes and external uncertainties. In a self-adaptation context, we are often interested in reasoning about the performance of the systems under different configurations. Usually, we learn a black-box model based on real measurements to predict the performance of the system given a specific configuration. However, as modern systems become more complex, there are many configuration parameters that may interact and we end up learning an exponentially large configuration space. Naturally, this does not scale when relying on real measurements in the actual changing environment. We propose a different solution: Instead of taking the measurements from the real system, we learn the model using samples from other sources, such as simulators that approximate performance of the real system at low cost. We define a cost model that transform the traditional view of model learning into a multi-objective problem that not only takes into account model accuracy but also measurements effort as well. We evaluate our cost-aware transfer learning solution using real-world configurable software including (i) a robotic system, (ii) 3 different stream processing applications, and (iii) a NoSQL database system. The experimental results demonstrate that our approach can achieve (a) a high prediction accuracy, as well as (b) a high model reliability.Comment: To be published in the proceedings of the 12th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS'17
    • …
    corecore