23 research outputs found

    Flexi-WVSNP-DASH: A Wireless Video Sensor Network Platform for the Internet of Things

    Get PDF
    abstract: Video capture, storage, and distribution in wireless video sensor networks (WVSNs) critically depends on the resources of the nodes forming the sensor networks. In the era of big data, Internet of Things (IoT), and distributed demand and solutions, there is a need for multi-dimensional data to be part of the Sensor Network data that is easily accessible and consumable by humanity as well as machinery. Images and video are expected to become as ubiquitous as is the scalar data in traditional sensor networks. The inception of video-streaming over the Internet, heralded a relentless research for effective ways of distributing video in a scalable and cost effective way. There has been novel implementation attempts across several network layers. Due to the inherent complications of backward compatibility and need for standardization across network layers, there has been a refocused attention to address most of the video distribution over the application layer. As a result, a few video streaming solutions over the Hypertext Transfer Protocol (HTTP) have been proposed. Most notable are Apple’s HTTP Live Streaming (HLS) and the Motion Picture Experts Groups Dynamic Adaptive Streaming over HTTP (MPEG-DASH). These frameworks, do not address the typical and future WVSN use cases. A highly flexible Wireless Video Sensor Network Platform and compatible DASH (WVSNP-DASH) are introduced. The platform's goal is to usher video as a data element that can be integrated into traditional and non-Internet networks. A low cost, scalable node is built from the ground up to be fully compatible with the Internet of Things Machine to Machine (M2M) concept, as well as the ability to be easily re-targeted to new applications in a short time. Flexi-WVSNP design includes a multi-radio node, a middle-ware for sensor operation and communication, a cross platform client facing data retriever/player framework, scalable security as well as a cohesive but decoupled hardware and software design.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Design and Implementation of HD Wireless Video Transmission System Based on Millimeter Wave

    Get PDF
    With the improvement of optical fiber communication network construction and the improvement of camera technology, the video that the terminal can receive becomes clearer, with resolution up to 4K. Although optical fiber communication has high bandwidth and fast transmission speed, it is not the best solution for indoor short-distance video transmission in terms of cost, laying difficulty and speed. In this context, this thesis proposes to design and implement a multi-channel wireless HD video transmission system with high transmission performance by using the 60GHz millimeter wave technology, aiming to improve the bandwidth from optical nodes to wireless terminals and improve the quality of video transmission. This thesis mainly covers the following parts: (1) This thesis implements wireless video transmission algorithm, which is divided into wireless transmission algorithm and video transmission algorithm, such as 64QAM modulation and demodulation algorithm, H.264 video algorithm and YUV420P algorithm. (2) This thesis designs the hardware of wireless HD video transmission system, including network processing unit (NPU) and millimeter wave module. Millimeter wave module uses RWM6050 baseband chip and TRX-BF01 rf chip. This thesis will design the corresponding hardware circuit based on the above chip, such as 10Gb/s network port, PCIE. (3) This thesis realizes the software design of wireless HD video transmission system, selects FFmpeg and Nginx to build the sending platform of video transmission system on NPU, and realizes video multiplex transmission with Docker. On the receiving platform of video transmission, FFmpeg and Qt are selected to realize video decoding, and OpenGL is combined to realize video playback. (4) Finally, the thesis completed the wireless HD video transmission system test, including pressure test, Web test and application scenario test. It has been verified that its HD video wireless transmission system can transmit HD VR video with three-channel bit rate of 1.2GB /s, and its rate can reach up to 3.7GB /s, which meets the research goal

    Design and evaluation of multimedia extensions for the DLX architecture

    Get PDF
    Multimedia computer architecture extensions for Hennessy and Patterson\u27s DLX architecture are developed following the study of multimedia applications and existing multimedia architecture extensions. Support for the extensions is added to a VHDL superscalar DLX CPU model as well as a DLX assembler. Key functions used in digital video encoding and decoding are modified to use the extensions, and simulations are undertaken using the VHDL model to determine the speedup offered by the extensions for these functions. The results of the simulations are used to calculate the application speedup based on the function speedup and the fraction of the time that each application spends executing each function. It is shown that the superscalar CPU design limits the performance gain offered by the extensions, and concluded that the effectiveness of the extensions is further limited by the fraction of the application code that can make use of them

    An accurate analysis for guaranteed performance of multiprocessor streaming applications

    Get PDF
    Already for more than a decade, consumer electronic devices have been available for entertainment, educational, or telecommunication tasks based on multimedia streaming applications, i.e., applications that process streams of audio and video samples in digital form. Multimedia capabilities are expected to become more and more commonplace in portable devices. This leads to challenges with respect to cost efficiency and quality. This thesis contributes models and analysis techniques for improving the cost efficiency, and therefore also the quality, of multimedia devices. Portable consumer electronic devices should feature flexible functionality on the one hand and low power consumption on the other hand. Those two requirements are conflicting. Therefore, we focus on a class of hardware that represents a good trade-off between those two requirements, namely on domain-specific multiprocessor systems-on-chip (MP-SoC). Our research work contributes to dynamic (i.e., run-time) optimization of MP-SoC system metrics. The central question in this area is how to ensure that real-time constraints are satisfied and the metric of interest such as perceived multimedia quality or power consumption is optimized. In these cases, we speak of quality-of-service (QoS) and power management, respectively. In this thesis, we pursue real-time constraint satisfaction that is guaranteed by the system by construction and proven mainly based on analytical reasoning. That approach is often taken in real-time systems to ensure reliable performance. Therefore the performance analysis has to be conservative, i.e. it has to use pessimistic assumptions on the unknown conditions that can negatively influence the system performance. We adopt this hypothesis as the foundation of this work. Therefore, the subject of this thesis is the analysis of guaranteed performance for multimedia applications running on multiprocessors. It is very important to note that our conservative approach is essentially different from considering only the worst-case state of the system. Unlike the worst-case approach, our approach is dynamic, i.e. it makes use of run-time characteristics of the input data and the environment of the application. The main purpose of our performance analysis method is to guide the run-time optimization. Typically, a resource or quality manager predicts the execution time, i.e., the time it takes the system to process a certain number of input data samples. When the execution times get smaller, due to dependency of the execution time on the input data, the manager can switch the control parameter for the metric of interest such that the metric improves but the system gets slower. For power optimization, that means switching to a low-power mode. If execution times grow, the manager can set parameters so that the system gets faster. For QoS management, for example, the application can be switched to a different quality mode with some degradation in perceived quality. The real-time constraints are then never violated and the metrics of interest are kept as good as possible. Unfortunately, maintaining system metrics such as power and quality at the optimal level contradicts with our main requirement, i.e., providing performance guarantees, because for this one has to give up some quality or power consumption. Therefore, the performance analysis approach developed in this thesis is not only conservative, but also accurate, so that the optimization of the metric of interest does not suffer too much from conservativity. This is not trivial to realize when two factors are combined: parallel execution on multiple processors and dynamic variation of the data-dependent execution delays. We achieve the goal of conservative and accurate performance estimation for an important class of multiprocessor platforms and multimedia applications. Our performance analysis technique is realizable in practice in QoS or power management setups. We consider a generic MP-SoC platform that runs a dynamic set of applications, each application possibly using multiple processors. We assume that the applications are independent, although it is possible to relax this requirement in the future. To support real-time constraints, we require that the platform can provide guaranteed computation, communication and memory budgets for applications. Following important trends in system-on-chip communication, we support both global buses and networks-on-chip. We represent every application as a homogeneous synchronous dataflow (HSDF) graph, where the application tasks are modeled as graph nodes, called actors. We allow dynamic datadependent actor execution delays, which makes HSDF graphs very useful to express modern streaming applications. Our reason to consider HSDF graphs is that they provide a good basic foundation for analytical performance estimation. In this setup, this thesis provides three major contributions: 1. Given an application mapped to an MP-SoC platform, given the performance guarantees for the individual computation units (the processors) and the communication unit (the network-on-chip), and given constant actor execution delays, we derive the throughput and the execution time of the system as a whole. 2. Given a mapped application and platform performance guarantees as in the previous item, we extend our approach for constant actor execution delays to dynamic datadependent actor delays. 3. We propose a global implementation trajectory that starts from the application specification and goes through design-time and run-time phases. It uses an extension of the HSDF model of computation to reflect the design decisions made along the trajectory. We present our model and trajectory not only to put the first two contributions into the right context, but also to present our vision on different parts of the trajectory, to make a complete and consistent story. Our first contribution uses the idea of so-called IPC (inter-processor communication) graphs known from the literature, whereby a single model of computation (i.e., HSDF graphs) are used to model not only the computation units, but also the communication unit (the global bus or the network-on-chip) and the FIFO (first-in-first-out) buffers that form a ‘glue’ between the computation and communication units. We were the first to propose HSDF graph structures for modeling bounded FIFO buffers and guaranteed throughput network connections for the network-on-chip communication in MP-SoCs. As a result, our HSDF models enable the formalization of the on-chip FIFO buffer capacity minimization problem under a throughput constraint as a graph-theoretic problem. Using HSDF graphs to formalize that problem helps to find the performance bottlenecks in a given solution to this problem and to improve this solution. To demonstrate this, we use the JPEG decoder application case study. Also, we show that, assuming constant – worst-case for the given JPEG image – actor delays, we can predict execution times of JPEG decoding on two processors with an accuracy of 21%. Our second contribution is based on an extension of the scenario approach. This approach is based on the observation that the dynamic behavior of an application is typically composed of a limited number of sub-behaviors, i.e., scenarios, that have similar resource requirements, i.e., similar actor execution delays in the context of this thesis. The previous work on scenarios treats only single-processor applications or multiprocessor applications that do not exploit all the flexibility of the HSDF model of computation. We develop new scenario-based techniques in the context of HSDF graphs, to derive the timing overlap between different scenarios, which is very important to achieve good accuracy for general HSDF graphs executing on multiprocessors. We exploit this idea in an application case study – the MPEG-4 arbitrarily-shaped video decoder, and demonstrate execution time prediction with an average accuracy of 11%. To the best of our knowledge, for the given setup, no other existing performance technique can provide a comparable accuracy and at the same time performance guarantees

    Embedded electronic systems driven by run-time reconfigurable hardware

    Get PDF
    Abstract This doctoral thesis addresses the design of embedded electronic systems based on run-time reconfigurable hardware technology –available through SRAM-based FPGA/SoC devices– aimed at contributing to enhance the life quality of the human beings. This work does research on the conception of the system architecture and the reconfiguration engine that provides to the FPGA the capability of dynamic partial reconfiguration in order to synthesize, by means of hardware/software co-design, a given application partitioned in processing tasks which are multiplexed in time and space, optimizing thus its physical implementation –silicon area, processing time, complexity, flexibility, functional density, cost and power consumption– in comparison with other alternatives based on static hardware (MCU, DSP, GPU, ASSP, ASIC, etc.). The design flow of such technology is evaluated through the prototyping of several engineering applications (control systems, mathematical coprocessors, complex image processors, etc.), showing a high enough level of maturity for its exploitation in the industry.Resumen Esta tesis doctoral abarca el diseño de sistemas electrónicos embebidos basados en tecnología hardware dinámicamente reconfigurable –disponible a través de dispositivos lógicos programables SRAM FPGA/SoC– que contribuyan a la mejora de la calidad de vida de la sociedad. Se investiga la arquitectura del sistema y del motor de reconfiguración que proporcione a la FPGA la capacidad de reconfiguración dinámica parcial de sus recursos programables, con objeto de sintetizar, mediante codiseño hardware/software, una determinada aplicación particionada en tareas multiplexadas en tiempo y en espacio, optimizando así su implementación física –área de silicio, tiempo de procesado, complejidad, flexibilidad, densidad funcional, coste y potencia disipada– comparada con otras alternativas basadas en hardware estático (MCU, DSP, GPU, ASSP, ASIC, etc.). Se evalúa el flujo de diseño de dicha tecnología a través del prototipado de varias aplicaciones de ingeniería (sistemas de control, coprocesadores aritméticos, procesadores de imagen, etc.), evidenciando un nivel de madurez viable ya para su explotación en la industria.Resum Aquesta tesi doctoral està orientada al disseny de sistemes electrònics empotrats basats en tecnologia hardware dinàmicament reconfigurable –disponible mitjançant dispositius lògics programables SRAM FPGA/SoC– que contribueixin a la millora de la qualitat de vida de la societat. S’investiga l’arquitectura del sistema i del motor de reconfiguració que proporcioni a la FPGA la capacitat de reconfiguració dinàmica parcial dels seus recursos programables, amb l’objectiu de sintetitzar, mitjançant codisseny hardware/software, una determinada aplicació particionada en tasques multiplexades en temps i en espai, optimizant així la seva implementació física –àrea de silici, temps de processat, complexitat, flexibilitat, densitat funcional, cost i potència dissipada– comparada amb altres alternatives basades en hardware estàtic (MCU, DSP, GPU, ASSP, ASIC, etc.). S’evalúa el fluxe de disseny d’aquesta tecnologia a través del prototipat de varies aplicacions d’enginyeria (sistemes de control, coprocessadors aritmètics, processadors d’imatge, etc.), demostrant un nivell de maduresa viable ja per a la seva explotació a la indústria

    Implementation of a MPEG 1 layer I audio decoder with variable bit lengths

    Get PDF
    One of the most popular forms of audio compression is MPEG (Moving Picture Experts Group). By using a VHDL (Very high-speed integrated circuit Hardware Description Language) implementation of a MPEG audio decoder and varying the word length of the constants and the multiplications used in the decoding process, and comparing the error, the minimum word length required can be determined. In general, the smaller the word length, the smaller the hardware resources required. This thesis is an investigation to find the minimum bit lengths required for each of the four multiplication sections used in a MPEG Audio decoder, that will still meet the quality levels specified in the MPEG standard. The use of the minimum bit lengths allows the minimum area resources of a FPGA (Field Programmable Gate Array) to be used. A FPGA model was designed that allowed the number of bits used to represent four constants and the results of the multiplications using these constants to vary. In order to limit the amount of data generated, testing was restricted to a single channel of audio data sampled at a frequency of 32kHz. This was then compared to the supplied C model distributed with the MPEG Audio Standard. It was found that for the MPEG audio coder to be fully compliant with the standard the bit lengths of the constants and the multiplications could be reduced by 75% and to be partial compliant with the standard, the bit lengths of the constants and the multiplications could be reduced by up to 82%. An implementation of a MPEG audio decoder in VHDL has the advantage of specific hardware, optimised, for all the different complex mathematical operations thereby reducing the repetitive operations and therefore power consumption and the time required performing these complex operations

    JPEG decoder implementation on FPGA using dynamic partial reconfiguration

    Get PDF
    Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e telecomunicaçõesEsta tese descreve o estudo realizado sobre o tema de Sistemas Computacionais Reconfiguráveis utilizando Field-Programmable Gate Array (FPGA). Sistemas Computacionais Reconfiguráveis é um conceito tão antigo como a computação utilizando circuitos electrónicos. Para explorar os aspetos práticos do conceito, foi implementado um descodificador de imagens codificadas em sistema Baseline JPEGsobre uma FPGA da família Zynq™-7000. Realizado todo o trabalho de desenho, implementação e depuração do descodificador utilizando métodos tradicionais de implementação estática da lógica na FPGA, foi posteriormente realizado o trabalho de adaptação do descodificador desenvolvido para implementação na mesma FPGA utilizando métodos de implementação com reconfiguração parcialdinâmica. Este novo método tem como objetivo principal a realização de um descodificador funcional utilizando apenas uma parte dos recursos lógicos da FPGA quando comparado com a implementação estática do descodificador. A utilização de reconfiguração dinâmica tem como consequência um incremento da complexidade do sistema, originando, numa perspetiva macro, diferenças entre ambos os descodificadores, mas globalmente baseados nos mesmos critérios de desenho e partilhando grande parte dos módulos internos. São ainda descritos os passos para atingir o objetivo, de forma a clarificar o processo de reconfiguração parcial dinâmica para uma aplicação em eventuais novos critérios de projeto e diferentes cenários de aplicação. Esta tese explora ainda o desenvolvimento de sistemas auxiliares que permitem a descodificação direta de ficheiros .jpg e a sua apresentação num monitor VGA.Abstract: This thesis describes a study conducted in Reconfigurable Computing using a Field-Programmable Gate Array (FPGA). Reconfigurable Computing is a concept almost as old as high-speed electronic computing itself. To explore the practical aspects of the concept, a Baseline JPEG image decoder was implemented over a Zynq™-7000 family FPGA. After using traditional methods for the design, implementation and debugging of static decoder logic, the work path was set to adapt the decoder to be implemented on the same FPGA using methods based on Dynamic Partial Reconfiguration. Using this approach the main objective was to develop a working decoder with only a subset of the used resources ofthe FPGA when compared to static implementation of the similar decoder. The dynamic partial reconfiguration brings some additional complexity to the system resulting on two different decoders from a macro perspective view but globally relying on the same design considerations and that share the majority of the internal modules. The steps to achieve the objective are described in order to clarify the dynamic partial reconfiguration process and to eventually open new design possibilities that can be exploited in different application scenarios. The thesis also explores the development of auxiliary systems to enable the ability to decode direct .jpg files and present them on a VGA monitor

    Survey of FPGA applications in the period 2000 – 2015 (Technical Report)

    Get PDF
    Romoth J, Porrmann M, Rückert U. Survey of FPGA applications in the period 2000 – 2015 (Technical Report).; 2017.Since their introduction, FPGAs can be seen in more and more different fields of applications. The key advantage is the combination of software-like flexibility with the performance otherwise common to hardware. Nevertheless, every application field introduces special requirements to the used computational architecture. This paper provides an overview of the different topics FPGAs have been used for in the last 15 years of research and why they have been chosen over other processing units like e.g. CPUs

    Embedded computing systems design: architectural and application perspectives

    Get PDF
    Questo elaborato affronta varie problematiche legate alla progettazione e all'implementazione dei moderni sistemi embedded di computing, ponendo in rilevo, e talvolta in contrapposizione, le sfide che emergono all'avanzare della tecnologia ed i requisiti che invece emergono a livello applicativo, derivanti dalle necessità degli utenti finali e dai trend di mercato. La discussione sarà articolata tenendo conto di due punti di vista: la progettazione hardware e la loro applicazione a livello di sistema. A livello hardware saranno affrontati nel dettaglio i problemi di interconnettività on-chip. Aspetto che riguarda la parallelizzazione del calcolo, ma anche l'integrazione di funzionalità eterogenee. Sarà quindi discussa un'architettura d'interconnessione denominata Network-on-Chip (NoC). La soluzione proposta è in grado di supportare funzionalità avanzate di networking direttamente in hardware, consentendo tuttavia di raggiungere sempre un compromesso ottimale tra prestazioni in termini di traffico e requisiti di implementazioni a seconda dell'applicazione specifica. Nella discussione di questa tematica, verrà posto l'accento sul problema della configurabilità dei blocchi che compongono una NoC. Quello della configurabilità, è un problema sempre più sentito nella progettazione dei sistemi complessi, nei quali si cerca di sviluppare delle funzionalità, anche molto evolute, ma che siano semplicemente riutilizzabili. A tale scopo sarà introdotta una nuova metodologia, denominata Metacoding che consiste nell'astrarre i problemi di configurabilità attraverso linguaggi di programmazione di alto livello. Sulla base del metacoding verrà anche proposto un flusso di design automatico in grado di semplificare la progettazione e la configurazione di una NoC da parte del designer di rete. Come anticipato, la discussione si sposterà poi a livello di sistema, per affrontare la progettazione di tali sistemi dal punto di vista applicativo, focalizzando l'attenzione in particolare sulle applicazioni di monitoraggio remoto. A tal riguardo saranno studiati nel dettaglio tutti gli aspetti che riguardano la progettazione di un sistema per il monitoraggio di pazienti affetti da scompenso cardiaco cronico. Si partirà dalla definizione dei requisiti, che, come spesso accade a questo livello, derivano principalmente dai bisogni dell'utente finale, nel nostro caso medici e pazienti. Verranno discusse le problematiche di acquisizione, elaborazione e gestione delle misure. Il sistema proposto introduce vari aspetti innovativi tra i quali il concetto di protocollo operativo e l'elevata interoperabilità offerta. In ultima analisi, verranno riportati i risultati relativi alla sperimentazione del sistema implementato. Infine, il tema del monitoraggio remoto sarà concluso con lo studio delle reti di distribuzione elettrica intelligenti: le Smart Grid, cercando di fare uno studio dello stato dell'arte del settore, proponendo un'architettura di Home Area Network (HAN) e suggerendone una possibile implementazione attraverso Commercial Off the Shelf (COTS)

    GPU-based Architecture Modeling and Instruction Set Extension for Signal Processing Applications

    Get PDF
    The modeling of embedded systems attempts to estimate the performance and costs prior to the implementation. The early stage predictions for performance and power dissipation reduces the more costly late stage design modifications. Workload modeling is an approach where an abstract application is evaluated against an abstract architecture. The challenge in modeling is the balance between fidelity and simplicity, where fidelity refers to the correctness of the predictions and the simplicity relates to the simulation time of the model and its ease of comprehension for the developer. A model named GSLA for performance and power modeling is presented, which extends existing architecture modeling by including GPUs as parallel processing elements. The performance model showed an average fidelity of 93% and the power model demonstrated an average fidelity of 84% between the models and several application measurements. The GSLA model is very simple: only 2 parameters that can be obtained by automated scripts. Besides the modeling, this thesis addresses lower level signal processing system improvements by proposing Instruction Set Architecture (ISA) extensions for RISC-V processors. A vehicle classifier neural network model was used as a case study, in which the benefit of Bit Manipulation Instructions (BMI) is shown. The result is a new PopCount instruction extension that is verified in ETISS simulator. The PopCount extension of RISC-V ISA showed a performance improvement of more than double for the vehicle classifier application. In addition, the design flow for adding a new instruction extension for a re-configurable platform is presented. The GPU modeling and the RISC-V ISA extension added new features to the state of the art. They improve the modeling features as well as reduce the execution costs in signal processing platforms
    corecore