18,962 research outputs found

    Computation of biochemical pathway fluctuations beyond the linear noise approximation using iNA

    Full text link
    The linear noise approximation is commonly used to obtain intrinsic noise statistics for biochemical networks. These estimates are accurate for networks with large numbers of molecules. However it is well known that many biochemical networks are characterized by at least one species with a small number of molecules. We here describe version 0.3 of the software intrinsic Noise Analyzer (iNA) which allows for accurate computation of noise statistics over wide ranges of molecule numbers. This is achieved by calculating the next order corrections to the linear noise approximation's estimates of variance and covariance of concentration fluctuations. The efficiency of the methods is significantly improved by automated just-in-time compilation using the LLVM framework leading to a fluctuation analysis which typically outperforms that obtained by means of exact stochastic simulations. iNA is hence particularly well suited for the needs of the computational biology community.Comment: 5 pages, 2 figures, conference proceeding IEEE International Conference on Bioinformatics and Biomedicine (BIBM) 201

    Efficient Reactive Brownian Dynamics

    Full text link
    We develop a Split Reactive Brownian Dynamics (SRBD) algorithm for particle simulations of reaction-diffusion systems based on the Doi or volume reactivity model, in which pairs of particles react with a specified Poisson rate if they are closer than a chosen reactive distance. In our Doi model, we ensure that the microscopic reaction rules for various association and disassociation reactions are consistent with detailed balance (time reversibility) at thermodynamic equilibrium. The SRBD algorithm uses Strang splitting in time to separate reaction and diffusion, and solves both the diffusion-only and reaction-only subproblems exactly, even at high packing densities. To efficiently process reactions without uncontrolled approximations, SRBD employs an event-driven algorithm that processes reactions in a time-ordered sequence over the duration of the time step. A grid of cells with size larger than all of the reactive distances is used to schedule and process the reactions, but unlike traditional grid-based methods such as Reaction-Diffusion Master Equation (RDME) algorithms, the results of SRBD are statistically independent of the size of the grid used to accelerate the processing of reactions. We use the SRBD algorithm to compute the effective macroscopic reaction rate for both reaction- and diffusion-limited irreversible association in three dimensions. We also study long-time tails in the time correlation functions for reversible association at thermodynamic equilibrium. Finally, we compare different particle and continuum methods on a model exhibiting a Turing-like instability and pattern formation. We find that for models in which particles diffuse off lattice, such as the Doi model, reactions lead to a spurious enhancement of the effective diffusion coefficients.Comment: To appear in J. Chem. Phy

    Data-driven modelling of biological multi-scale processes

    Full text link
    Biological processes involve a variety of spatial and temporal scales. A holistic understanding of many biological processes therefore requires multi-scale models which capture the relevant properties on all these scales. In this manuscript we review mathematical modelling approaches used to describe the individual spatial scales and how they are integrated into holistic models. We discuss the relation between spatial and temporal scales and the implication of that on multi-scale modelling. Based upon this overview over state-of-the-art modelling approaches, we formulate key challenges in mathematical and computational modelling of biological multi-scale and multi-physics processes. In particular, we considered the availability of analysis tools for multi-scale models and model-based multi-scale data integration. We provide a compact review of methods for model-based data integration and model-based hypothesis testing. Furthermore, novel approaches and recent trends are discussed, including computation time reduction using reduced order and surrogate models, which contribute to the solution of inference problems. We conclude the manuscript by providing a few ideas for the development of tailored multi-scale inference methods.Comment: This manuscript will appear in the Journal of Coupled Systems and Multiscale Dynamics (American Scientific Publishers

    Effective simulation techniques for biological systems

    Get PDF
    In this paper we give an overview of some very recent work on the stochastic simulation of systems involving chemical reactions. In many biological systems (such as genetic regulation and cellular dynamics) there is a mix between small numbers of key regulatory proteins, and medium and large numbers of molecules. In addition, it is important to be able to follow the trajectories of individual molecules by taking proper account of the randomness inherent in such a system. We describe different types of simulation techniques (including the stochastic simulation algorithm, Poisson Runge-Kutta methods and the Balanced Euler method) for treating simulations in the three different reaction regimes: slow, medium and fast. We then review some recent techniques on the treatment of coupled slow and fast reactions for stochastic chemical kinetics and discuss how novel computing implementations can enhance the performance of these simulations

    Mathematics at the eve of a historic transition in biology

    Full text link
    A century ago physicists and mathematicians worked in tandem and established quantum mechanism. Indeed, algebras, partial differential equations, group theory, and functional analysis underpin the foundation of quantum mechanism. Currently, biology is undergoing a historic transition from qualitative, phenomenological and descriptive to quantitative, analytical and predictive. Mathematics, again, becomes a driving force behind this new transition in biology.Comment: 5 pages, 2 figure

    Coarse Stability and Bifurcation Analysis Using Stochastic Simulators: Kinetic Monte Carlo Examples

    Full text link
    We implement a computer-assisted approach that, under appropriate conditions, allows the bifurcation analysis of the coarse dynamic behavior of microscopic simulators without requiring the explicit derivation of closed macroscopic equations for this behavior. The approach is inspired by the so-called time-step per based numerical bifurcation theory. We illustrate the approach through the computation of both stable and unstable coarsely invariant states for Kinetic Monte Carlo models of three simple surface reaction schemes. We quantify the linearized stability of these coarsely invariant states, perform pseudo-arclength continuation, detect coarse limit point and coarse Hopf bifurcations and construct two-parameter bifurcation diagrams.Comment: 26 pages, 5 figure
    • …
    corecore