27,958 research outputs found

    Fault-tolerant software: dependability/performance trade-offs, concurrency and system support

    Get PDF
    PhD ThesisAs the use of computer systems becomes more and more widespread in applications that demand high levels of dependability, these applications themselves are growing in complexity in a rapid rate, especially in the areas that require concurrent and distributed computing. Such complex systems are very prone to faults and errors. No matter how rigorously fault avoidance and fault removal techniques are applied, software design faults often remain in systems when they are delivered to the customers. In fact, residual software faults are becoming the significant underlying cause of system failures and the lack of dependability. There is tremendous need for systematic techniques for building dependable software, including the fault tolerance techniques that ensure software-based systems to operate dependably even when potential faults are present. However, although there has been a large amount of research in the area of fault-tolerant software, existing techniques are not yet sufficiently mature as a practical engineering discipline for realistic applications. In particular, they are often inadequate when applied to highly concurrent and distributed software. This thesis develops new techniques for building fault-tolerant software, addresses the problem of achieving high levels of dependability in concurrent and distributed object systems, and studies system-level support for implementing dependable software. Two schemes are developed - the t/(n-l)-VP approach is aimed at increasing software reliability and controlling additional complexity, while the SCOP approach presents an adaptive way of dynamically adjusting software reliability and efficiency aspects. As a more general framework for constructing dependable concurrent and distributed software, the Coordinated Atomic (CA) Action scheme is examined thoroughly. Key properties of CA actions are formalized, conceptual model and mechanisms for handling application level exceptions are devised, and object-based diversity techniques are introduced to cope with potential software faults. These three schemes are evaluated analytically and validated by controlled experiments. System-level support is also addressed with a multi-level system architecture. An architectural pattern for implementing fault-tolerant objects is documented in detail to capture existing solutions and our previous experience. An industrial safety-critical application, the Fault-Tolerant Production Cell, is used as a case study to examine most of the concepts and techniques developed in this research.ESPRIT

    Implementing fault tolerant applications using reflective object-oriented programming

    Get PDF
    Abstract: Shows how reflection and object-oriented programming can be used to ease the implementation of classical fault tolerance mechanisms in distributed applications. When the underlying runtime system does not provide fault tolerance transparently, classical approaches to implementing fault tolerance mechanisms often imply mixing functional programming with non-functional programming (e.g. error processing mechanisms). The use of reflection improves the transparency of fault tolerance mechanisms to the programmer and more generally provides a clearer separation between functional and non-functional programming. The implementations of some classical replication techniques using a reflective approach are presented in detail and illustrated by several examples, which have been prototyped on a network of Unix workstations. Lessons learnt from our experiments are drawn and future work is discussed

    A Survey of Fault-Tolerance and Fault-Recovery Techniques in Parallel Systems

    Full text link
    Supercomputing systems today often come in the form of large numbers of commodity systems linked together into a computing cluster. These systems, like any distributed system, can have large numbers of independent hardware components cooperating or collaborating on a computation. Unfortunately, any of this vast number of components can fail at any time, resulting in potentially erroneous output. In order to improve the robustness of supercomputing applications in the presence of failures, many techniques have been developed to provide resilience to these kinds of system faults. This survey provides an overview of these various fault-tolerance techniques.Comment: 11 page

    FRIENDS - A flexible architecture for implementing fault tolerant and secure distributed applications

    Get PDF
    FRIENDS is a software-based architecture for implementing fault-tolerant and, to some extent, secure applications. This architecture is composed of sub-systems and libraries of metaobjects. Transparency and separation of concerns is provided not only to the application programmer but also to the programmers implementing metaobjects for fault tolerance, secure communication and distribution. Common services required for implementing metaobjects are provided by the sub-systems. Metaobjects are implemented using object-oriented techniques and can be reused and customised according to the application needs, the operational environment and its related fault assumptions. Flexibility is increased by a recursive use of metaobjects. Examples and experiments are also described

    A metaobject architecture for fault-tolerant distributed systems : the FRIENDS approach

    Get PDF
    The FRIENDS system developed at LAAS-CNRS is a metalevel architecture providing libraries of metaobjects for fault tolerance, secure communication, and group-based distributed applications. The use of metaobjects provides a nice separation of concerns between mechanisms and applications. Metaobjects can be used transparently by applications and can be composed according to the needs of a given application, a given architecture, and its underlying properties. In FRIENDS, metaobjects are used recursively to add new properties to applications. They are designed using an object oriented design method and implemented on top of basic system services. This paper describes the FRIENDS software-based architecture, the object-oriented development of metaobjects, the experiments that we have done, and summarizes the advantages and drawbacks of a metaobject approach for building fault-tolerant system
    • 

    corecore