10,191 research outputs found

    Vulnerability anti-patterns:a timeless way to capture poor software practices (Vulnerabilities)

    Get PDF
    There is a distinct communication gap between the software engineering and cybersecurity communities when it comes to addressing reoccurring security problems, known as vulnerabilities. Many vulnerabilities are caused by software errors that are created by software developers. Insecure software development practices are common due to a variety of factors, which include inefficiencies within existing knowledge transfer mechanisms based on vulnerability databases (VDBs), software developers perceiving security as an afterthought, and lack of consideration of security as part of the software development lifecycle (SDLC). The resulting communication gap also prevents developers and security experts from successfully sharing essential security knowledge. The cybersecurity community makes their expert knowledge available in forms including vulnerability databases such as CAPEC and CWE, and pattern catalogues such as Security Patterns, Attack Patterns, and Software Fault Patterns. However, these sources are not effective at providing software developers with an understanding of how malicious hackers can exploit vulnerabilities in the software systems they create. As developers are familiar with pattern-based approaches, this paper proposes the use of Vulnerability Anti-Patterns (VAP) to transfer usable vulnerability knowledge to developers, bridging the communication gap between security experts and software developers. The primary contribution of this paper is twofold: (1) it proposes a new pattern template – Vulnerability Anti-Pattern – that uses anti-patterns rather than patterns to capture and communicate knowledge of existing vulnerabilities, and (2) it proposes a catalogue of Vulnerability Anti-Patterns (VAP) based on the most commonly occurring vulnerabilities that software developers can use to learn how malicious hackers can exploit errors in software

    A Touch of Evil: High-Assurance Cryptographic Hardware from Untrusted Components

    Get PDF
    The semiconductor industry is fully globalized and integrated circuits (ICs) are commonly defined, designed and fabricated in different premises across the world. This reduces production costs, but also exposes ICs to supply chain attacks, where insiders introduce malicious circuitry into the final products. Additionally, despite extensive post-fabrication testing, it is not uncommon for ICs with subtle fabrication errors to make it into production systems. While many systems may be able to tolerate a few byzantine components, this is not the case for cryptographic hardware, storing and computing on confidential data. For this reason, many error and backdoor detection techniques have been proposed over the years. So far all attempts have been either quickly circumvented, or come with unrealistically high manufacturing costs and complexity. This paper proposes Myst, a practical high-assurance architecture, that uses commercial off-the-shelf (COTS) hardware, and provides strong security guarantees, even in the presence of multiple malicious or faulty components. The key idea is to combine protective-redundancy with modern threshold cryptographic techniques to build a system tolerant to hardware trojans and errors. To evaluate our design, we build a Hardware Security Module that provides the highest level of assurance possible with COTS components. Specifically, we employ more than a hundred COTS secure crypto-coprocessors, verified to FIPS140-2 Level 4 tamper-resistance standards, and use them to realize high-confidentiality random number generation, key derivation, public key decryption and signing. Our experiments show a reasonable computational overhead (less than 1% for both Decryption and Signing) and an exponential increase in backdoor-tolerance as more ICs are added

    Safety arguments for next generation location aware computing

    Get PDF
    Concerns over the accuracy, availability, integrity and continuity of Global Navigation Satellite Systems (GNSS) have limited the integration of GPS and GLONASS for safety-critical applications. More recent augmentation systems, such as the European Geostationary Navigation Overlay Service (EGNOS) and the North American Wide Area Augmentation System (WAAS) have begun to address these concerns. Augmentation architectures build on the existing GPS/GLONASS infrastructures to support locationbased services in Safety of Life (SoL) applications. Much of the technical development has been directed by air traffic management requirements, in anticipation of the more extensive support to be offered by GPS III and Galileo. WAAS has already been approved to provide vertical guidance against ICAO safety performance criteria for aviation applications. During the next twelve months, we will see the full certification of EGNOS for SoL applications. This paper identifies strong similarities between the safety assessment techniques used in Europe and North America. Both have relied on hazard analysis techniques to derive estimates of the Probability of Hazardously Misleading Information (PHMI). Later sections identify significant differences between the approaches adopted in application development. Integrated fault trees have been developed by regulatory and commercial organisations to consider both infrastructure hazards and their impact on non-precision RNAV/VNAV approaches using WAAS. In contrast, EUROCONTROL and the European Space Agency have developed a more modular approach to safety-case development for EGNOS. It remains to be seen whether the European or North American strategy offers the greatest support as satellite based augmentation systems are used within a growing range of SoL applications from railway signalling through to Unmanned Airborne Systems. The key contribution of this paper is to focus attention on the safety arguments that might support this wider class of location based services

    Assurance Benefits of ISO 26262 compliant Microcontrollers for safety-critical Avionics

    Full text link
    The usage of complex Microcontroller Units (MCUs) in avionic systems constitutes a challenge in assuring their safety. They are not developed according to the development requirements accepted by the aerospace industry. These Commercial off-the-shelf (COTS) hardware components usually target other domains like the telecommunication branch. In the last years MCUs developed in compliance to the ISO 26262 have been released on the market for safety-related automotive applications. The avionic assurance process could profit from these safety MCUs. In this paper we present evaluation results based on the current assurance practice that demonstrates expected assurance activities benefit from ISO 26262 compliant MCUs.Comment: Submitted to SafeComp 2018: http://www.es.mdh.se/safecomp2018

    Radiation Hardness Assurance: Evolving for NewSpace

    Get PDF
    During the past decade, numerous small satellites have been launched into space, with dramatically expanded dependence on advanced commercial-off-the-shelf (COTS) technologies and systems required for mission success. While the radiation effects vulnerabilities of small satellites are the same as those of their larger, traditional relatives, revised approaches are needed for risk management because of differences in technical requirements and programmatic resources. While moving to COTS components and systems may reduce direct costs and procurement lead times, it undermines many cost-reduction strategies used for conventional radiation hardness assurance (RHA). Limited resources are accompanied by a lack of radiation testing and analysis, which can pose significant risksor worse, be neglected altogether. Small satellites have benefited from short mission durations in low Earth orbits with respect to their radiation response, but as mission objectives grow and become reliant on advanced technologies operating for longer and in harsher environments, requirements need to reflect the changing scope without hindering developers that provide new capabilities

    Safety-related challenges and opportunities for GPUs in the automotive domain

    Get PDF
    GPUs have been shown to cover the computing performance needs of autonomous driving (AD) systems. However, since the GPUs used for AD build on designs for the mainstream market, they may lack fundamental properties for correct operation under automotive's safety regulations. In this paper, we analyze some of the main challenges in hardware and software design to embrace GPUs as the reference computing solution for AD, with the emphasis in ISO 26262 functional safety requirements.Authors would like to thank Guillem Bernat from Rapita Systems for his technical feedback on this work. The research leading to this work has received funding from the European Re-search Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 772773). This work has also been partially supported by the Spanish Ministry of Science and Innovation under grant TIN2015-65316-P and the HiPEAC Network of Excellence. Jaume Abella has been partially supported by the Ministry of Economy and Competitiveness under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717. Carles Hernández is jointly funded by the Spanish Ministry of Economy and Competitiveness and FEDER funds through grant TIN2014-60404-JIN.Peer ReviewedPostprint (author's final draft
    • …
    corecore