12,823 research outputs found

    A Survey on Compiler Autotuning using Machine Learning

    Full text link
    Since the mid-1990s, researchers have been trying to use machine-learning based approaches to solve a number of different compiler optimization problems. These techniques primarily enhance the quality of the obtained results and, more importantly, make it feasible to tackle two main compiler optimization problems: optimization selection (choosing which optimizations to apply) and phase-ordering (choosing the order of applying optimizations). The compiler optimization space continues to grow due to the advancement of applications, increasing number of compiler optimizations, and new target architectures. Generic optimization passes in compilers cannot fully leverage newly introduced optimizations and, therefore, cannot keep up with the pace of increasing options. This survey summarizes and classifies the recent advances in using machine learning for the compiler optimization field, particularly on the two major problems of (1) selecting the best optimizations and (2) the phase-ordering of optimizations. The survey highlights the approaches taken so far, the obtained results, the fine-grain classification among different approaches and finally, the influential papers of the field.Comment: version 5.0 (updated on September 2018)- Preprint Version For our Accepted Journal @ ACM CSUR 2018 (42 pages) - This survey will be updated quarterly here (Send me your new published papers to be added in the subsequent version) History: Received November 2016; Revised August 2017; Revised February 2018; Accepted March 2018

    Static analysis of energy consumption for LLVM IR programs

    Get PDF
    Energy models can be constructed by characterizing the energy consumed by executing each instruction in a processor's instruction set. This can be used to determine how much energy is required to execute a sequence of assembly instructions, without the need to instrument or measure hardware. However, statically analyzing low-level program structures is hard, and the gap between the high-level program structure and the low-level energy models needs to be bridged. We have developed techniques for performing a static analysis on the intermediate compiler representations of a program. Specifically, we target LLVM IR, a representation used by modern compilers, including Clang. Using these techniques we can automatically infer an estimate of the energy consumed when running a function under different platforms, using different compilers. One of the challenges in doing so is that of determining an energy cost of executing LLVM IR program segments, for which we have developed two different approaches. When this information is used in conjunction with our analysis, we are able to infer energy formulae that characterize the energy consumption for a particular program. This approach can be applied to any languages targeting the LLVM toolchain, including C and XC or architectures such as ARM Cortex-M or XMOS xCORE, with a focus towards embedded platforms. Our techniques are validated on these platforms by comparing the static analysis results to the physical measurements taken from the hardware. Static energy consumption estimation enables energy-aware software development, without requiring hardware knowledge

    Energy Transparency for Deeply Embedded Programs

    Get PDF
    Energy transparency is a concept that makes a program's energy consumption visible, from hardware up to software, through the different system layers. Such transparency can enable energy optimizations at each layer and between layers, and help both programmers and operating systems make energy-aware decisions. In this paper, we focus on deeply embedded devices, typically used for Internet of Things (IoT) applications, and demonstrate how to enable energy transparency through existing Static Resource Analysis (SRA) techniques and a new target-agnostic profiling technique, without hardware energy measurements. Our novel mapping technique enables software energy consumption estimations at a higher level than the Instruction Set Architecture (ISA), namely the LLVM Intermediate Representation (IR) level, and therefore introduces energy transparency directly to the LLVM optimizer. We apply our energy estimation techniques to a comprehensive set of benchmarks, including single- and also multi-threaded embedded programs from two commonly used concurrency patterns, task farms and pipelines. Using SRA, our LLVM IR results demonstrate a high accuracy with a deviation in the range of 1% from the ISA SRA. Our profiling technique captures the actual energy consumption at the LLVM IR level with an average error of 3%.Comment: 33 pages, 7 figures. arXiv admin note: substantial text overlap with arXiv:1510.0709

    Design of multimedia processor based on metric computation

    Get PDF
    Media-processing applications, such as signal processing, 2D and 3D graphics rendering, and image compression, are the dominant workloads in many embedded systems today. The real-time constraints of those media applications have taxing demands on today's processor performances with low cost, low power and reduced design delay. To satisfy those challenges, a fast and efficient strategy consists in upgrading a low cost general purpose processor core. This approach is based on the personalization of a general RISC processor core according the target multimedia application requirements. Thus, if the extra cost is justified, the general purpose processor GPP core can be enforced with instruction level coprocessors, coarse grain dedicated hardware, ad hoc memories or new GPP cores. In this way the final design solution is tailored to the application requirements. The proposed approach is based on three main steps: the first one is the analysis of the targeted application using efficient metrics. The second step is the selection of the appropriate architecture template according to the first step results and recommendations. The third step is the architecture generation. This approach is experimented using various image and video algorithms showing its feasibility

    ENTRA:Whole-systems energy transparency

    Get PDF
    Promoting energy efficiency to a first class system design goal is an important research challenge. Although more energy-efficient hardware can be designed, it is software that controls the hardware; for a given system the potential for energy savings is likely to be much greater at the higher levels of abstraction in the system stack. Thus the greatest savings are expected from energy-aware software development, which is the vision of the EU ENTRA project. This article presents the concept of energy transparency as a foundation for energy-aware software development. We show how energy modelling of hardware is combined with static analysis to allow the programmer to understand the energy consumption of a program without executing it, thus enabling exploration of the design space taking energy into consideration. The paper concludes by summarising the current and future challenges identified in the ENTRA project.Comment: Revised preprint submitted to MICPRO on 27 May 2016, 23 pages, 3 figure

    Characterizing and Subsetting Big Data Workloads

    Full text link
    Big data benchmark suites must include a diversity of data and workloads to be useful in fairly evaluating big data systems and architectures. However, using truly comprehensive benchmarks poses great challenges for the architecture community. First, we need to thoroughly understand the behaviors of a variety of workloads. Second, our usual simulation-based research methods become prohibitively expensive for big data. As big data is an emerging field, more and more software stacks are being proposed to facilitate the development of big data applications, which aggravates hese challenges. In this paper, we first use Principle Component Analysis (PCA) to identify the most important characteristics from 45 metrics to characterize big data workloads from BigDataBench, a comprehensive big data benchmark suite. Second, we apply a clustering technique to the principle components obtained from the PCA to investigate the similarity among big data workloads, and we verify the importance of including different software stacks for big data benchmarking. Third, we select seven representative big data workloads by removing redundant ones and release the BigDataBench simulation version, which is publicly available from http://prof.ict.ac.cn/BigDataBench/simulatorversion/.Comment: 11 pages, 6 figures, 2014 IEEE International Symposium on Workload Characterizatio
    • …
    corecore