182 research outputs found

    Quantum Cryptography in Practice

    Get PDF
    BBN, Harvard, and Boston University are building the DARPA Quantum Network, the world's first network that delivers end-to-end network security via high-speed Quantum Key Distribution, and testing that Network against sophisticated eavesdropping attacks. The first network link has been up and steadily operational in our laboratory since December 2002. It provides a Virtual Private Network between private enclaves, with user traffic protected by a weak-coherent implementation of quantum cryptography. This prototype is suitable for deployment in metro-size areas via standard telecom (dark) fiber. In this paper, we introduce quantum cryptography, discuss its relation to modern secure networks, and describe its unusual physical layer, its specialized quantum cryptographic protocol suite (quite interesting in its own right), and our extensions to IPsec to integrate it with quantum cryptography.Comment: Preprint of SIGCOMM 2003 pape

    Field-Trial of Machine Learning-Assisted Quantum Key Distribution (QKD) Networking with SDN

    Full text link
    We demonstrated, for the first time, a machine-learning method to assist the coexistence between quantum and classical communication channels. Software-defined networking was used to successfully enable the key generation and transmission over a city and campus network

    Experimental Demonstration of DDoS Mitigation over a Quantum Key Distribution (QKD) Network Using Software Defined Networking (SDN)

    Full text link
    We experimentally demonstrate, for the first time, DDoS mitigation of QKD-based networks utilizing a software defined network application. Successful quantum-secured link allocation is achieved after a DDoS attack based on real-time monitoring of quantum parametersComment: Accepted for presentation in OFC 2018 Conference. M2A.

    Secure NFV Orchestration Over an SDN-Controlled Optical Network With Time-Shared Quantum Key Distribution Resources

    Get PDF
    Quantum key distribution (QKD) is a state-of-the-art method of generating cryptographic keys by exchanging single photons. Measurements on the photons are constrained by the laws of quantum mechanics, and it is from this that the keys derive their security. Current public key encryption relies on mathematical problems that cannot be solved efficiently using present-day technologies; however, it is vulnerable to computational advances. In contrast QKD generates truly random keys secured against computational advances and more general attacks when implemented properly. On the other hand, networks are moving towards a process of softwarization with the main objective to reduce cost in both, the deployment and in the network maintenance. This process replaces traditional network functionalities (or even full network instances) typically performed in network devices to be located as software distributed across commodity data centers. Within this context, network function virtualization (NFV) is a new concept in which operations of current proprietary hardware appliances are decoupled and run as software instances. However, the security of NFV still needs to be addressed prior to deployment in the real world. In particular, virtual network function (VNF) distribution across data centers is a risk for network operators, as an eavesdropper could compromise not just virtualized services, but the whole infrastructure. We demonstrate, for the first time, a secure architectural solution for VNF distribution, combining NFV orchestration and QKD technology by scheduling an optical network using SDN. A time-shared approach is designed and presented as a cost-effective solution for practical deployment, showing the performance of different quantum links in a distributed environment

    Quantum Key Distribution (QKD) over Software-Defined Optical Networks

    Get PDF
    Optical network security is attracting increasing research interest. Currently, software-defined optical network (SDON) has been proposed to increase network intelligence (e.g., flexibility and programmability) which is gradually moving toward industrialization. However, a variety of new threats are emerging in SDONs. Data encryption is an effective way to secure communications in SDONs. However, classical key distribution methods based on the mathematical complexity will suffer from increasing computational power and attack algorithms in the near future. Noticeably, quantum key distribution (QKD) is now being considered as a secure mechanism to provision information-theoretically secure secret keys for data encryption, which is a potential technique to protect communications from security attacks in SDONs. This chapter introduces the basic principles and enabling technologies of QKD. Based on the QKD enabling technologies, an architecture of QKD over SDONs is presented. Resource allocation problem is elaborated in detail and is classified into wavelength allocation, time-slot allocation, and secret key allocation problems in QKD over SDONs. Some open issues and challenges such as survivability, cost optimization, and key on demand (KoD) for QKD over SDONs are discussed
    • …
    corecore