203 research outputs found

    Distributed-Memory Breadth-First Search on Massive Graphs

    Full text link
    This chapter studies the problem of traversing large graphs using the breadth-first search order on distributed-memory supercomputers. We consider both the traditional level-synchronous top-down algorithm as well as the recently discovered direction optimizing algorithm. We analyze the performance and scalability trade-offs in using different local data structures such as CSR and DCSC, enabling in-node multithreading, and graph decompositions such as 1D and 2D decomposition.Comment: arXiv admin note: text overlap with arXiv:1104.451

    Partial aggregation for collective communication in distributed memory machines

    Get PDF
    High Performance Computing (HPC) systems interconnect a large number of Processing Elements (PEs) in high-bandwidth networks to simulate complex scientific problems. The increasing scale of HPC systems poses great challenges on algorithm designers. As the average distance between PEs increases, data movement across hierarchical memory subsystems introduces high latency. Minimizing latency is particularly challenging in collective communications, where many PEs may interact in complex communication patterns. Although collective communications can be optimized for network-level parallelism, occasional synchronization delays due to dependencies in the communication pattern degrade application performance. To reduce the performance impact of communication and synchronization costs, parallel algorithms are designed with sophisticated latency hiding techniques. The principle is to interleave computation with asynchronous communication, which increases the overall occupancy of compute cores. However, collective communication primitives abstract parallelism which limits the integration of latency hiding techniques. Approaches to work around these limitations either modify the algorithmic structure of application codes, or replace collective primitives with verbose low-level communication calls. While these approaches give fine-grained control for latency hiding, implementing collective communication algorithms is challenging and requires expertise knowledge about HPC network topologies. A collective communication pattern is commonly described as a Directed Acyclic Graph (DAG) where a set of PEs, represented as vertices, resolve data dependencies through communication along the edges. Our approach improves latency hiding in collective communication through partial aggregation. Based on mathematical rules of binary operations and homomorphism, we expose data parallelism in a respective DAG to overlap computation with communication. The proposed concepts are implemented and evaluated with a subset of collective primitives in the Message Passing Interface (MPI), an established communication standard in scientific computing. An experimental analysis with communication-bound microbenchmarks shows considerable performance benefits for the evaluated collective primitives. A detailed case study with a large-scale distributed sort algorithm demonstrates, how partial aggregation significantly improves performance in data-intensive scenarios. Besides better latency hiding capabilities with collective communication primitives, our approach enables further optimizations of their implementations within MPI libraries. The vast amount of asynchronous programming models, which are actively studied in the HPC community, benefit from partial aggregation in collective communication patterns. Future work can utilize partial aggregation to improve the interaction of MPI collectives with acclerator architectures, and to design more efficient communication algorithms

    Advances in parallel programming for electronic design automation

    Get PDF
    The continued miniaturization of the technology node increases not only the chip capacity but also the circuit design complexity. How does one efficiently design a chip with millions or billions transistors? This has become a challenging problem in the integrated circuit (IC) design industry, especially for the developers of electronic design automation (EDA) tools. To boost the performance of EDA tools, one promising direction is via parallel computing. In this dissertation, we explore different parallel computing approaches, from CPU to GPU to distributed computing, for EDA applications. Nowadays multi-core processors are prevalent from mobile devices to laptops to desktop, and it is natural for software developers to utilize the available cores to maximize the performance of their applications. Therefore, in this dissertation we first focus on multi-threaded programming. We begin by reviewing a C++ parallel programming library called Cpp-Taskflow. Cpp-Taskflow is designed to facilitate programming parallel applications, and has been successfully applied to an EDA timing analysis tool. We will demonstrate Cpp-Taskflow’s programming model and interface, software architecture and execution flow. Then, we improve Cpp-Taskflow in several aspects. First, we enhance Cpp-Taskflow’s usability through restructuring the software architecture. Second, we introduce task graph composition to support composability and modularity, which makes it easier for users to construct large and complex parallel patterns. Third, we add a new task type in Cpp-Taskflow to let users control the graph execution flow. This feature empowers the graph model with the ability to describe complex control flow. Aside from the above enhancements, we have designed a new scheduler to adaptively manage the threads based on available parallelism. The new scheduler uses a simple and effective strategy which can not only prevent resource from being underutilized, but also mitigate resource over-subscription. We have evaluated the new scheduler on both micro-benchmarks and a very-large-scale integration (VLSI) application, and the results show that the new scheduler can achieve good performance and is very energy-efficient. Next we study the applicability of heterogeneous computing, specifically the graphics processing unit (GPU), to EDA. We demonstrate how to use GPU to accelerate VLSI placement, and we show that GPU can bring substantial performance gain to VLSI placement. Finally, as the design size keeps increasing, a more scalable solution will be distributed computing. We introduce a distributed power grid analysis framework built on top of DtCraft. This framework allows users to flexibly partition the design and automatically deploy the computations across several machines. In addition, we propose a job scheduler that can efficiently utilize cluster resource to improve the framework’s performance

    PYDAC: A DISTRIBUTED RUNTIME SYSTEM AND PROGRAMMING MODEL FOR A HETEROGENEOUS MANY-CORE ARCHITECTURE

    Get PDF
    Heterogeneous many-core architectures that consist of big, fast cores and small, energy-efficient cores are very promising for future high-performance computing (HPC) systems. These architectures offer a good balance between single-threaded perfor- mance and multithreaded throughput. Such systems impose challenges on the design of programming model and runtime system. Specifically, these challenges include (a) how to fully utilize the chip’s performance, (b) how to manage heterogeneous, un- reliable hardware resources, and (c) how to generate and manage a large amount of parallel tasks. This dissertation proposes and evaluates a Python-based programming framework called PyDac. PyDac supports a two-level programming model. At the high level, a programmer creates a very large number of tasks, using the divide-and-conquer strategy. At the low level, tasks are written in imperative programming style. The runtime system seamlessly manages the parallel tasks, system resilience, and inter- task communication with architecture support. PyDac has been implemented on both an field-programmable gate array (FPGA) emulation of an unconventional het- erogeneous architecture and a conventional multicore microprocessor. To evaluate the performance, resilience, and programmability of the proposed system, several micro-benchmarks were developed. We found that (a) the PyDac abstracts away task communication and achieves programmability, (b) the micro-benchmarks are scalable on the hardware prototype, but (predictably) serial operation limits some micro-benchmarks, and (c) the degree of protection versus speed could be varied in redundant threading that is transparent to programmers

    Adaptive Parallelism for Coupled, Multithreaded Message-Passing Programs

    Get PDF
    Hybrid parallel programming models that combine message passing (MP) and shared- memory multithreading (MT) are becoming more popular, especially with applications requiring higher degrees of parallelism and scalability. Consequently, coupled parallel programs, those built via the integration of independently developed and optimized software libraries linked into a single application, increasingly comprise message-passing libraries with differing preferred degrees of threading, resulting in thread-level heterogeneity. Retroactively matching threading levels between independently developed and maintained libraries is difficult, and the challenge is exacerbated because contemporary middleware services provide only static scheduling policies over entire program executions, necessitating suboptimal, over-subscribed or under-subscribed, configurations. In coupled applications, a poorly configured component can lead to overall poor application performance, suboptimal resource utilization, and increased time-to-solution. So it is critical that each library executes in a manner consistent with its design and tuning for a particular system architecture and workload. Therefore, there is a need for techniques that address dynamic, conflicting configurations in coupled multithreaded message-passing (MT-MP) programs. Our thesis is that we can achieve significant performance improvements over static under-subscribed approaches through reconfigurable execution environments that consider compute phase parallelization strategies along with both hardware and software characteristics. In this work, we present new ways to structure, execute, and analyze coupled MT- MP programs. Our study begins with an examination of contemporary approaches used to accommodate thread-level heterogeneity in coupled MT-MP programs. Here we identify potential inefficiencies in how these programs are structured and executed in the high-performance computing domain. We then present and evaluate a novel approach for accommodating thread-level heterogeneity. Our approach enables full utilization of all available compute resources throughout an application’s execution by providing programmable facilities with modest overheads to dynamically reconfigure runtime environments for compute phases with differing threading factors and affinities. Our performance results show that for a majority of the tested scientific workloads our approach and corresponding open-source reference implementation render speedups greater than 50 % over the static under-subscribed baseline. Motivated by our examination of reconfigurable execution environments and their memory overhead, we also study the memory attribution problem: the inability to predict or evaluate during runtime where the available memory is used across the software stack comprising the application, reusable software libraries, and supporting runtime infrastructure. Specifically, dynamic adaptation requires runtime intervention, which by its nature introduces additional runtime and memory overhead. To better understand the latter, we propose and evaluate a new way to quantify component-level memory usage from unmodified binaries dynamically linked to a message-passing communication library. Our experimental results show that our approach and corresponding implementation accurately measure memory resource usage as a function of time, scale, communication workload, and software or hardware system architecture, clearly distinguishing between application and communication library usage at a per-process level

    Performance analysis for parallel programs from multicore to petascale

    Get PDF
    Cutting-edge science and engineering applications require petascale computing. Petascale computing platforms are characterized by both extreme parallelism (systems of hundreds of thousands to millions of cores) and hybrid parallelism (nodes with multicore chips). Consequently, to effectively use petascale resources, applications must exploit concurrency at both the node and system level --- a difficult problem. The challenge of developing scalable petascale applications is only partially aided by existing languages and compilers. As a result, manual performance tuning is often necessary to identify and resolve poor parallel and serial efficiency. Our thesis is that it is possible to achieve unique, accurate, and actionable insight into the performance of fully optimized parallel programs by measuring them with asynchronous-sampling-based call path profiles; attributing the resulting binary-level measurements to source code structure; analyzing measurements on-the-fly and postmortem to highlight performance inefficiencies; and presenting the resulting context- sensitive metrics in three complementary views. To support this thesis, we have developed several techniques for identifying performance problems in fully optimized serial, multithreaded and petascale programs. First, we describe how to attribute very precise (instruction-level) measurements to source-level static and dynamic contexts in fully optimized applications --- all for an average run-time overhead of a few percent. We then generalize this work with the development of logical call path profiling and apply it to work-stealing-based applications. Second, we describe techniques for pinpointing and quantifying parallel inefficiencies such as parallel idleness, parallel overhead and lock contention in multithreaded executions. Third, we show how to diagnose scalability bottlenecks in petascale applications by scaling our our measurement, analysis and presentation tools to support large-scale executions. Finally, we provide a coherent framework for these techniques by sketching a unique and comprehensive performance analysis methodology. This work forms the basis of Rice University's HPCTOOLKIT performance tools

    Complementing user-level coarse-grain parallelism with implicit speculative parallelism

    Get PDF
    Multi-core and many-core systems are the norm in contemporary processor technology and are expected to remain so for the foreseeable future. Parallel programming is, thus, here to stay and programmers have to endorse it if they are to exploit such systems for their applications. Programs using parallel programming primitives like PThreads or OpenMP often exploit coarse-grain parallelism, because it offers a good trade-off between programming effort versus performance gain. Some parallel applications show limited or no scaling beyond a number of cores. Given the abundant number of cores expected in future many-cores, several cores would remain idle in such cases while execution performance stagnates. This thesis proposes using cores that do not contribute to performance improvement for running implicit fine-grain speculative threads. In particular, we present a many-core architecture and protocols that allow applications with coarse-grain explicit parallelism to further exploit implicit speculative parallelism within each thread. We show that complementing parallel programs with implicit speculative mechanisms offers significant performance improvements for a large and diverse set of parallel benchmarks. Implicit speculative parallelism frees the programmer from the additional effort to explicitly partition the work into finer and properly synchronized tasks. Our results show that, for a many-core comprising 128 cores supporting implicit speculative parallelism in clusters of 2 or 4 cores, performance improves on top of the highest scalability point by 44% on average for the 4-core cluster and by 31% on average for the 2-core cluster. We also show that this approach often leads to better performance and energy efficiency compared to existing alternatives such as Core Fusion and Turbo Boost. Moreover, we present a dynamic mechanism to choose the number of explicit and implicit threads, which performs within 6% of the static oracle selection of threads. To improve energy efficiency processors allow for Dynamic Voltage and Frequency Scaling (DVFS), which enables changing their performance and power consumption on-the-fly. We evaluate the amenability of the proposed explicit plus implicit threads scheme to traditional power management techniques for multithreaded applications and identify room for improvement. We thus augment prior schemes and introduce a novel multithreaded power management scheme that accounts for implicit threads and aims to minimize the Energy Delay2 product (ED2). Our scheme comprises two components: a “local” component that tries to adapt to the different program phases on a per explicit thread basis, taking into account implicit thread behavior, and a “global” component that augments the local components with information regarding inter-thread synchronization. Experimental results show a reduction of ED2 of 8% compared to having no power management, with an average reduction in power of 15% that comes at a minimal loss of performance of less than 3% on average

    Parallel architectures and runtime systems co-design for task-based programming models

    Get PDF
    The increasing parallelism levels in modern computing systems has extolled the need for a holistic vision when designing multiprocessor architectures taking in account the needs of the programming models and applications. Nowadays, system design consists of several layers on top of each other from the architecture up to the application software. Although this design allows to do a separation of concerns where it is possible to independently change layers due to a well-known interface between them, it is hampering future systems design as the Law of Moore reaches to an end. Current performance improvements on computer architecture are driven by the shrinkage of the transistor channel width, allowing faster and more power efficient chips to be made. However, technology is reaching physical limitations were the transistor size will not be able to be reduced furthermore and requires a change of paradigm in systems design. This thesis proposes to break this layered design, and advocates for a system where the architecture and the programming model runtime system are able to exchange information towards a common goal, improve performance and reduce power consumption. By making the architecture aware of runtime information such as a Task Dependency Graph (TDG) in the case of dataflow task-based programming models, it is possible to improve power consumption by exploiting the critical path of the graph. Moreover, the architecture can provide hardware support to create such a graph in order to reduce the runtime overheads and making possible the execution of fine-grained tasks to increase the available parallelism. Finally, the current status of inter-node communication primitives can be exposed to the runtime system in order to perform a more efficient communication scheduling, and also creates new opportunities of computation and communication overlap that were not possible before. An evaluation of the proposals introduced in this thesis is provided and a methodology to simulate and characterize the application behavior is also presented.El aumento del paralelismo proporcionado por los sistemas de cómputo modernos ha provocado la necesidad de una visión holística en el diseño de arquitecturas multiprocesador que tome en cuenta las necesidades de los modelos de programación y las aplicaciones. Hoy en día el diseño de los computadores consiste en diferentes capas de abstracción con una interfaz bien definida entre ellas. Las limitaciones de esta aproximación junto con el fin de la ley de Moore limitan el potencial de los futuros computadores. La mayoría de las mejoras actuales en el diseño de los computadores provienen fundamentalmente de la reducción del tamaño del canal del transistor, lo cual permite chips más rápidos y con un consumo eficiente sin apenas cambios fundamentales en el diseño de la arquitectura. Sin embargo, la tecnología actual está alcanzando limitaciones físicas donde no será posible reducir el tamaño de los transistores motivando así un cambio de paradigma en la construcción de los computadores. Esta tesis propone romper este diseño en capas y abogar por un sistema donde la arquitectura y el sistema de tiempo de ejecución del modelo de programación sean capaces de intercambiar información para alcanzar una meta común: La mejora del rendimiento y la reducción del consumo energético. Haciendo que la arquitectura sea consciente de la información disponible en el modelo de programación, como puede ser el grafo de dependencias entre tareas en los modelos de programación dataflow, es posible reducir el consumo energético explotando el camino critico del grafo. Además, la arquitectura puede proveer de soporte hardware para crear este grafo con el objetivo de reducir el overhead de construir este grado cuando la granularidad de las tareas es demasiado fina. Finalmente, el estado de las comunicaciones entre nodos puede ser expuesto al sistema de tiempo de ejecución para realizar una mejor planificación de las comunicaciones y creando nuevas oportunidades de solapamiento entre cómputo y comunicación que no eran posibles anteriormente. Esta tesis aporta una evaluación de todas estas propuestas, así como una metodología para simular y caracterizar el comportamiento de las aplicacionesPostprint (published version

    The fast multipole method at exascale

    Get PDF
    This thesis presents a top to bottom analysis on designing and implementing fast algorithms for current and future systems. We present new analysis, algorithmic techniques, and implementations of the Fast Multipole Method (FMM) for solving N- body problems. We target the FMM because it is broadly applicable to a variety of scientific particle simulations used to study electromagnetic, fluid, and gravitational phenomena, among others. Importantly, the FMM has asymptotically optimal time complexity with guaranteed approximation accuracy. As such, it is among the most attractive solutions for scalable particle simulation on future extreme scale systems. We specifically address two key challenges. The first challenge is how to engineer fast code for today’s platforms. We present the first in-depth study of multicore op- timizations and tuning for FMM, along with a systematic approach for transforming a conventionally-parallelized FMM into a highly-tuned one. We introduce novel opti- mizations that significantly improve the within-node scalability of the FMM, thereby enabling high-performance in the face of multicore and manycore systems. The second challenge is how to understand scalability on future systems. We present a new algorithmic complexity analysis of the FMM that considers both intra- and inter- node communication costs. Using these models, we present results for choosing the optimal algorithmic tuning parameter. This analysis also yields the surprising prediction that although the FMM is largely compute-bound today, and therefore highly scalable on current systems, the trajectory of processor architecture designs, if there are no significant changes could cause it to become communication-bound as early as the year 2015. This prediction suggests the utility of our analysis approach, which directly relates algorithmic and architectural characteristics, for enabling a new kind of highlevel algorithm-architecture co-design. To demonstrate the scientific significance of FMM, we present two applications namely, direct simulation of blood which is a multi-scale multi-physics problem and large-scale biomolecular electrostatics. MoBo (Moving Boundaries) is the infrastruc- ture for the direct numerical simulation of blood. It comprises of two key algorithmic components of which FMM is one. We were able to simulate blood flow using Stoke- sian dynamics on 200,000 cores of Jaguar, a peta-flop system and achieve a sustained performance of 0.7 Petaflop/s. The second application we propose as future work in this thesis is biomolecular electrostatics where we solve for the electrical potential using the boundary-integral formulation discretized with boundary element methods (BEM). The computational kernel in solving the large linear system is dense matrix vector multiply which we propose can be calculated using our scalable FMM. We propose to begin with the two dielectric problem where the electrostatic field is cal- culated using two continuum dielectric medium, the solvent and the molecule. This is only a first step to solving biologically challenging problems which have more than two dielectric medium, ion-exclusion layers, and solvent filled cavities. Finally, given the difficulty in producing high-performance scalable code, productivity is a key concern. Recently, numerical algorithms are being redesigned to take advantage of the architectural features of emerging multicore processors. These new classes of algorithms express fine-grained asynchronous parallelism and hence reduce the cost of synchronization. We performed the first extensive performance study of a recently proposed parallel programming model, called Concurrent Collections (CnC). In CnC, the programmer expresses her computation in terms of application-specific operations, partially-ordered by semantic scheduling constraints. The CnC model is well-suited to expressing asynchronous-parallel algorithms, so we evaluate CnC using two dense linear algebra algorithms in this style for execution on state-of-the-art mul- ticore systems. Our implementations in CnC was able to match and in some cases even exceed competing vendor-tuned and domain specific library codes. We combine these two distinct research efforts by expressing FMM in CnC, our approach tries to marry performance with productivity that will be critical on future systems. Looking forward, we would like to extend this to distributed memory machines, specifically implement FMM in the new distributed CnC, distCnC to express fine-grained paral- lelism which would require significant effort in alternative models.Ph.D
    corecore