3,394 research outputs found

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    Energy Efficient Designs for Collaborative Signal and Information Processing inWireless Sensor Networks

    Get PDF
    Collaborative signal and information processing (CSIP) plays an important role in the deployment of wireless sensor networks. Since each sensor has limited computing capability, constrained power usage, and limited sensing range, collaboration among sensor nodes is important in order to compensate for each other’s limitation as well as to improve the degree of fault tolerance. In order to support the execution of CSIP algorithms, distributed computing paradigm and clustering protocols, are needed, which are the major concentrations of this dissertation. In order to facilitate collaboration among sensor nodes, we present a mobile-agent computing paradigm, where instead of each sensor node sending local information to a processing center, as is typical in the client/server-based computing, the processing code is moved to the sensor nodes through mobile agents. We further conduct extensive performance evaluation versus the traditional client/server-based computing. Experimental results show that the mobile agent paradigm performs much better when the number of nodes is large while the client/server paradigm is advantageous when the number of nodes is small. Based on this result, we propose a hybrid computing paradigm that adopts different computing models within different clusters of sensor nodes. Either the client/server or the mobile agent paradigm can be employed within clusters or between clusters according to the different cluster configurations. This new computing paradigm can take full advantages of both client/server and mobile agent computing paradigms. Simulations show that the hybrid computing paradigm performs better than either the client/server or the mobile agent computing. The mobile agent itinerary has a significant impact on the overall performance of the sensor network. We thus formulate both the static mobile agent planning and the dynamic mobile agent planning as optimization problems. Based on the models, we present three itinerary planning algorithms. We have showed, through simulation, that the predictive dynamic itinerary performs the best under a wide range of conditions, thus making it particularly suitable for CSIP in wireless sensor networks. In order to facilitate the deployment of hybrid computing paradigm, we proposed a decentralized reactive clustering (DRC) protocol to cluster the sensor network in an energy-efficient way. The clustering process is only invoked by events occur in the sensor network. Nodes that do not detect the events are put into the sleep state to save energy. In addition, power control technique is used to minimize the transmission power needed. The advantages of DRC protocol are demonstrated through simulations

    Time constrained fault tolerance and management framework for k-connected distributed wireless sensor networks based on composite event detection

    Get PDF
    Wireless sensor nodes themselves are exceptionally complex systems where a variety of components interact in a complex way. In enterprise scenarios it becomes highly important to hide the details of the underlying sensor networks from the applications and to guarantee a minimum level of reliability of the system. One of the challenges faced to achieve this level of reliability is to overcome the failures frequently faced by sensor networks due to their tight integration with the environment. Failures can generate false information, which may trigger incorrect business processes, resulting in additional costs. Sensor networks are inherently fault prone due to the shared wireless communication medium. Thus, sensor nodes can lose synchrony and their programs can reach arbitrary states. Since on-site maintenance is not feasible, sensor network applications should be local and communication-efficient self-healing. Also, as per my knowledge, no such general framework exist that addresses all the fault issues one may encounter in a WSN, based on the extensive, exhaustive and comprehensive literature survey in the related areas of research. As one of the main goals of enterprise applications is to reduce the costs of business processes, a complete and more general Fault Tolerance and management framework for a general WSN, irrespective of the node types and deployment conditions is proposed which would help to mitigate the propagation of failures in a business environment, reduce the installation and maintenance costs and to gain deployment flexibility to allow for unobtrusive installation
    corecore