37 research outputs found

    Component-Oriented Behavior Extraction for Autonomic System Design

    Get PDF

    Proceedings of the First NASA Formal Methods Symposium

    Get PDF
    Topics covered include: Model Checking - My 27-Year Quest to Overcome the State Explosion Problem; Applying Formal Methods to NASA Projects: Transition from Research to Practice; TLA+: Whence, Wherefore, and Whither; Formal Methods Applications in Air Transportation; Theorem Proving in Intel Hardware Design; Building a Formal Model of a Human-Interactive System: Insights into the Integration of Formal Methods and Human Factors Engineering; Model Checking for Autonomic Systems Specified with ASSL; A Game-Theoretic Approach to Branching Time Abstract-Check-Refine Process; Software Model Checking Without Source Code; Generalized Abstract Symbolic Summaries; A Comparative Study of Randomized Constraint Solvers for Random-Symbolic Testing; Component-Oriented Behavior Extraction for Autonomic System Design; Automated Verification of Design Patterns with LePUS3; A Module Language for Typing by Contracts; From Goal-Oriented Requirements to Event-B Specifications; Introduction of Virtualization Technology to Multi-Process Model Checking; Comparing Techniques for Certified Static Analysis; Towards a Framework for Generating Tests to Satisfy Complex Code Coverage in Java Pathfinder; jFuzz: A Concolic Whitebox Fuzzer for Java; Machine-Checkable Timed CSP; Stochastic Formal Correctness of Numerical Algorithms; Deductive Verification of Cryptographic Software; Coloured Petri Net Refinement Specification and Correctness Proof with Coq; Modeling Guidelines for Code Generation in the Railway Signaling Context; Tactical Synthesis Of Efficient Global Search Algorithms; Towards Co-Engineering Communicating Autonomous Cyber-Physical Systems; and Formal Methods for Automated Diagnosis of Autosub 6000

    Intensional Cyberforensics

    Get PDF
    This work focuses on the application of intensional logic to cyberforensic analysis and its benefits and difficulties are compared with the finite-state-automata approach. This work extends the use of the intensional programming paradigm to the modeling and implementation of a cyberforensics investigation process with backtracing of event reconstruction, in which evidence is modeled by multidimensional hierarchical contexts, and proofs or disproofs of claims are undertaken in an eductive manner of evaluation. This approach is a practical, context-aware improvement over the finite state automata (FSA) approach we have seen in previous work. As a base implementation language model, we use in this approach a new dialect of the Lucid programming language, called Forensic Lucid, and we focus on defining hierarchical contexts based on intensional logic for the distributed evaluation of cyberforensic expressions. We also augment the work with credibility factors surrounding digital evidence and witness accounts, which have not been previously modeled. The Forensic Lucid programming language, used for this intensional cyberforensic analysis, formally presented through its syntax and operational semantics. In large part, the language is based on its predecessor and codecessor Lucid dialects, such as GIPL, Indexical Lucid, Lucx, Objective Lucid, and JOOIP bound by the underlying intensional programming paradigm.Comment: 412 pages, 94 figures, 18 tables, 19 algorithms and listings; PhD thesis; v2 corrects some typos and refs; also available on Spectrum at http://spectrum.library.concordia.ca/977460

    Adaptive security

    Get PDF
    Automated runtime security adaptation has great potential in providing timely and fine grained security control. In this thesis we study the practical utility of a runtime security-performance trade off for the pervasive Secure Socket Layer (SSL/TLS) protocol. To that end we address a number of research challenges. We develop an Adaptive Security methodology to extend non-adaptive legacy security systems with adaptive features. We also create a design of such an extended system to support the methodology. The design aids in identifying additional key components necessary for the creation of an adaptive security system. We furthermore apply our methodology to the Secure Socket Layer (SSL) protocol to create a design and implementation of a practical Adaptive SSL (ASSL) solution that supports runtime security adaptation in response to cross-cutting environmental concerns. The solution effectively adapts security at runtime, only reducing maximum server load by 15% or more depending on adaptation decision complexity. Next we address the security-performance trade off research challenge. Following our methodology we conduct an offline study of factors affecting server performance when security is adapted. These insights allow for the creation of policies that can trade off security and performance by taking into account the expected future state of the system under adaptation. In so doing we found that client SSL session duration, requested file size and current security algorithm play roles predicting future system state. Notably, performance deviation is smaller when sessions are longer and files are smaller and vice versa. A complete Adaptive Security solution which successfully demonstrates our methodology is implemented with trade-off policies and ASSL as key components. We show that the solution effectively utilises available processing resources to increase security whilst still respecting performance guarantees.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Towards a Self-Forensics Property in the ASSL Toolset

    Get PDF
    This preliminary conceptual work discusses a notion of self-forensics as an autonomic property to augment the Autonomic System Specification Language (ASSL) framework of formal specification tools for autonomic systems. The core of the proposed methodology leverages existing designs, theoretical results, and implementing systems to enable rapid completion of and validation of the experiments and their the results initiated in this work. Specifically, we leverage the ASSL toolkit to add the self-forensics autonomic property (SFAP) to enable generation of the Java-based Object-Oriented Intensional Programming (JOOIP) language code laced with traces of Forensic Lucid to encode contextual forensic evidence and other expressions
    corecore