4,323 research outputs found

    Unified radio and network control across heterogeneous hardware platforms

    Get PDF
    Experimentation is an important step in the investigation of techniques for handling spectrum scarcity or the development of new waveforms in future wireless networks. However, it is impractical and not cost effective to construct custom platforms for each future network scenario to be investigated. This problem is addressed by defining Unified Programming Interfaces that allow common access to several platforms for experimentation-based prototyping, research, and development purposes. The design of these interfaces is driven by a diverse set of scenarios that capture the functionality relevant to future network implementations while trying to keep them as generic as possible. Herein, the definition of this set of scenarios is presented as well as the architecture for supporting experimentation-based wireless research over multiple hardware platforms. The proposed architecture for experimentation incorporates both local and global unified interfaces to control any aspect of a wireless system while being completely agnostic to the actual technology incorporated. Control is feasible from the low-level features of individual radios to the entire network stack, including hierarchical control combinations. A testbed to enable the use of the above architecture is utilized that uses a backbone network in order to be able to extract measurements and observe the overall behaviour of the system under test without imposing further communication overhead to the actual experiment. Based on the aforementioned architecture, a system is proposed that is able to support the advancement of intelligent techniques for future networks through experimentation while decoupling promising algorithms and techniques from the capabilities of a specific hardware platform

    A Survey on Data Plane Programming with P4: Fundamentals, Advances, and Applied Research

    Full text link
    With traditional networking, users can configure control plane protocols to match the specific network configuration, but without the ability to fundamentally change the underlying algorithms. With SDN, the users may provide their own control plane, that can control network devices through their data plane APIs. Programmable data planes allow users to define their own data plane algorithms for network devices including appropriate data plane APIs which may be leveraged by user-defined SDN control. Thus, programmable data planes and SDN offer great flexibility for network customization, be it for specialized, commercial appliances, e.g., in 5G or data center networks, or for rapid prototyping in industrial and academic research. Programming protocol-independent packet processors (P4) has emerged as the currently most widespread abstraction, programming language, and concept for data plane programming. It is developed and standardized by an open community and it is supported by various software and hardware platforms. In this paper, we survey the literature from 2015 to 2020 on data plane programming with P4. Our survey covers 497 references of which 367 are scientific publications. We organize our work into two parts. In the first part, we give an overview of data plane programming models, the programming language, architectures, compilers, targets, and data plane APIs. We also consider research efforts to advance P4 technology. In the second part, we analyze a large body of literature considering P4-based applied research. We categorize 241 research papers into different application domains, summarize their contributions, and extract prototypes, target platforms, and source code availability.Comment: Submitted to IEEE Communications Surveys and Tutorials (COMS) on 2021-01-2

    Network layer access control for context-aware IPv6 applications

    Get PDF
    As part of the Lancaster GUIDE II project, we have developed a novel wireless access point protocol designed to support the development of next generation mobile context-aware applications in our local environs. Once deployed, this architecture will allow ordinary citizens secure, accountable and convenient access to a set of tailored applications including location, multimedia and context based services, and the public Internet. Our architecture utilises packet marking and network level packet filtering techniques within a modified Mobile IPv6 protocol stack to perform access control over a range of wireless network technologies. In this paper, we describe the rationale for, and components of, our architecture and contrast our approach with other state-of-the- art systems. The paper also contains details of our current implementation work, including preliminary performance measurements

    Leveraging Programmable Data Plane For Compressing Forwarding Tables

    Get PDF
    The Forwarding Information Base (FIB) resides in the data plane of a routing device and is used to forward packets to a next-hop, based on packets\u27 destination IP addresses. The constant growth of a FIB forces network operators to spend more resources on maintaining memory with line-rate Longest Prefix Match (LPM) lookup in a FIB, namely, expensive and energy-hungry Ternary Content-Addressable Memory (TCAM) chips. In this work, we review two different approaches used to mitigate the FIB overflow problem. First, we investigate FIB aggregation, i.e., merging adjacent or overlapping routes with the same next-hop while preserving the forwarding behavior of a FIB. We propose a near-optimal algorithm, FIB Aggregation with Quick Selections (FAQS), that minimizes the FIB churn and speeds BGP update processing by more than twice. In the meantime, FAQS preserves a high compression ratio (at most 73\%). FAQS handles BGP updates incrementally, without the need of re-aggregating the entire FIB table. Second, we investigate FIB (or route) caching, when TCAM holds only a portion of a FIB that carries most of the traffic. We leverage the emerging concept of the programmable data plane to propose a Programmable FIB Caching Architecture (PFCA), that allows cache-victim selection at the line rate and significantly reduces the FIB churn compared to FIB aggregation. PFCA achieves 99.8% cache-hit ratio with only 3.3\% of the FIB placed in a FIB cache. Finally, we extend PFCA\u27s design with a novel approach of integrating incremental FIB aggregation and FIB caching. Such integration needed to overcome cache hiding challenge when a less specific prefix in a cache hides a more specific prefix in a secondary FIB table, which leads to incorrect LPM matching at the cache. In Combined FIB Caching and Aggregation (CFCA), cache-hit ratio is maximized up to 99.94% with only 2.5\% entries of the FIB, while the total number of route changes in TCAM is reduced by more than 40\% compared to low-churn FIB aggregation techniques

    Quantum Cryptography in Practice

    Get PDF
    BBN, Harvard, and Boston University are building the DARPA Quantum Network, the world's first network that delivers end-to-end network security via high-speed Quantum Key Distribution, and testing that Network against sophisticated eavesdropping attacks. The first network link has been up and steadily operational in our laboratory since December 2002. It provides a Virtual Private Network between private enclaves, with user traffic protected by a weak-coherent implementation of quantum cryptography. This prototype is suitable for deployment in metro-size areas via standard telecom (dark) fiber. In this paper, we introduce quantum cryptography, discuss its relation to modern secure networks, and describe its unusual physical layer, its specialized quantum cryptographic protocol suite (quite interesting in its own right), and our extensions to IPsec to integrate it with quantum cryptography.Comment: Preprint of SIGCOMM 2003 pape

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results

    A service-oriented hybrid access network and clouds architecture

    Get PDF
    Many telecom operators are deploying their own cloud infrastructure with the two-fold objective of providing cloud services to their customers and enabling network function virtualization. In this article we present an architecture we call SHINE, which focuses on orchestrating cloud with heterogeneous access and core networks. In this architecture intra and inter DC connectivity is dynamically controlled, maximizing the overall performance in terms of throughput and latency while minimizing total costs. The main building blocks are: a future-proof network architecture that can scale to offer potentially unlimited bandwidth based on an active remote node (ARN) to interface end-users and the core network; an innovative distributed DC architecture consisting of micro-DCs placed in selected core locations to accelerate content delivery, reducing core network traffic, and ensuring very low latency; and dynamic orchestration of the distributed DC and access and core network segments. SHINE will provide unprecedented quality of experience, greatly reducing costs by coordinating network and cloud and facilitating service chaining by virtualizing network functions.Peer ReviewedPostprint (author’s final draft
    • …
    corecore