5,251 research outputs found

    Component Substitution through Dynamic Reconfigurations

    Get PDF
    Component substitution has numerous practical applications and constitutes an active research topic. This paper proposes to enrich an existing component-based framework--a model with dynamic reconfigurations making the system evolve--with a new reconfiguration operation which "substitutes" components by other components, and to study its impact on sequences of dynamic reconfigurations. Firstly, we define substitutability constraints which ensure the component encapsulation while performing reconfigurations by component substitutions. Then, we integrate them into a substitutability-based simulation to take these substituting reconfigurations into account on sequences of dynamic reconfigurations. Thirdly, as this new relation being in general undecidable for infinite-state systems, we propose a semi-algorithm to check it on the fly. Finally, we report on experimentations using the B tools to show the feasibility of the developed approach, and to illustrate the paper's proposals on an example of the HTTP server.Comment: In Proceedings FESCA 2014, arXiv:1404.043

    Architectural design rewriting as an architecture description language

    Get PDF
    Architectural Design Rewriting (ADR) is a declarative rule-based approach for the design of dynamic software architectures. The key features that make ADR a suitable and expressive framework are the algebraic presentation of graph-based structures and the use of conditional rewrite rules. These features enable the modelling of, e.g. hierarchical design, inductively defined reconfigurations and ordinary computation. Here, we promote ADR as an Architectural Description Language

    Fine Grained Component Engineering of Adaptive Overlays: Experiences and Perspectives

    Get PDF
    Recent years have seen significant research being carried out into peer-to-peer (P2P) systems. This work has focused on the styles and applications of P2P computing, from grid computation to content distribution; however, little investigation has been performed into how these systems are built. Component based engineering is an approach that has seen successful deployment in the field of middleware development; functionality is encapsulated in ‘building blocks’ that can be dynamically plugged together to form complete systems. This allows efficient, flexible and adaptable systems to be built with lower overhead and development complexity. This paper presents an investigation into the potential of using component based engineering in the design and construction of peer-to-peer overlays. It is highlighted that the quality of these properties is dictated by the component architecture used to implement the system. Three reusable decomposition architectures are designed and evaluated using Chord and Pastry case studies. These demonstrate that significant improvements can be made over traditional design approaches resulting in much more reusable, (re)configurable and extensible systems

    Software dependability modeling using an industry-standard architecture description language

    Full text link
    Performing dependability evaluation along with other analyses at architectural level allows both making architectural tradeoffs and predicting the effects of architectural decisions on the dependability of an application. This paper gives guidelines for building architectural dependability models for software systems using the AADL (Architecture Analysis and Design Language). It presents reusable modeling patterns for fault-tolerant applications and shows how the presented patterns can be used in the context of a subsystem of a real-life application
    • 

    corecore