232 research outputs found

    Virtual clinical trials in medical imaging: a review

    Get PDF
    The accelerating complexity and variety of medical imaging devices and methods have outpaced the ability to evaluate and optimize their design and clinical use. This is a significant and increasing challenge for both scientific investigations and clinical applications. Evaluations would ideally be done using clinical imaging trials. These experiments, however, are often not practical due to ethical limitations, expense, time requirements, or lack of ground truth. Virtual clinical trials (VCTs) (also known as in silico imaging trials or virtual imaging trials) offer an alternative means to efficiently evaluate medical imaging technologies virtually. They do so by simulating the patients, imaging systems, and interpreters. The field of VCTs has been constantly advanced over the past decades in multiple areas. We summarize the major developments and current status of the field of VCTs in medical imaging. We review the core components of a VCT: computational phantoms, simulators of different imaging modalities, and interpretation models. We also highlight some of the applications of VCTs across various imaging modalities

    Advanced ECG processing for cardiac MRI in arrhythmia

    Get PDF
    Arrhythmia commonly compromises the quality of standard cardiac MRI (CMR), and cine CMR of arrhythmias may be of interest for evaluating arrhythmia pathophysiology. The common method to perform MRI during arrhythmia is real-time imaging; however, temporal and spatial resolution is limited. In this work, a triggered method utilizing a newly implemented triggering system and a retrospectively gated method were evaluated. The triggering system was capable of both classifying the heartbeat type in real-time from an ECG signal and triggering the scanner to update the k-space sampling trajectory when a pre-chosen heartbeat type was encountered. On the other hand, the retrospectively gated method analyzes the ECG signal after imaging is completed and selects the appropriate k-space data to use in reconstruction. Numerical simulations incorporating different paces of heartbeats and respiration were performed to compare the efficiency of both methods. The triggered and the retrospectively gated methods were also evaluated in an animal experiment, and k-space sampling patterns of selected imaging data and reconstructed images are shown. The numerical simulations and the animal experiment suggested the higher time-efficiency of the triggered method compared with the retrospectively gated method. This work provided a platform where high temporal and spatial resolution CMR imaging could be performed, enabling studies of arrhythmic pathophysiology using MRI

    Proceedings of the second "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'14)

    Get PDF
    The implicit objective of the biennial "international - Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST) is to foster collaboration between international scientific teams by disseminating ideas through both specific oral/poster presentations and free discussions. For its second edition, the iTWIST workshop took place in the medieval and picturesque town of Namur in Belgium, from Wednesday August 27th till Friday August 29th, 2014. The workshop was conveniently located in "The Arsenal" building within walking distance of both hotels and town center. iTWIST'14 has gathered about 70 international participants and has featured 9 invited talks, 10 oral presentations, and 14 posters on the following themes, all related to the theory, application and generalization of the "sparsity paradigm": Sparsity-driven data sensing and processing; Union of low dimensional subspaces; Beyond linear and convex inverse problem; Matrix/manifold/graph sensing/processing; Blind inverse problems and dictionary learning; Sparsity and computational neuroscience; Information theory, geometry and randomness; Complexity/accuracy tradeoffs in numerical methods; Sparsity? What's next?; Sparse machine learning and inference.Comment: 69 pages, 24 extended abstracts, iTWIST'14 website: http://sites.google.com/site/itwist1

    Improved 3D MR Image Acquisition and Processing in Congenital Heart Disease

    Get PDF
    Congenital heart disease (CHD) is the most common type of birth defect, affecting about 1% of the population. MRI is an essential tool in the assessment of CHD, including diagnosis, intervention planning and follow-up. Three-dimensional MRI can provide particularly rich visualization and information. However, it is often complicated by long scan times, cardiorespiratory motion, injection of contrast agents, and complex and time-consuming postprocessing. This thesis comprises four pieces of work that attempt to respond to some of these challenges. The first piece of work aims to enable fast acquisition of 3D time-resolved cardiac imaging during free breathing. Rapid imaging was achieved using an efficient spiral sequence and a sparse parallel imaging reconstruction. The feasibility of this approach was demonstrated on a population of 10 patients with CHD, and areas of improvement were identified. The second piece of work is an integrated software tool designed to simplify and accelerate the development of machine learning (ML) applications in MRI research. It also exploits the strengths of recently developed ML libraries for efficient MR image reconstruction and processing. The third piece of work aims to reduce contrast dose in contrast-enhanced MR angiography (MRA). This would reduce risks and costs associated with contrast agents. A deep learning-based contrast enhancement technique was developed and shown to improve image quality in real low-dose MRA in a population of 40 children and adults with CHD. The fourth and final piece of work aims to simplify the creation of computational models for hemodynamic assessment of the great arteries. A deep learning technique for 3D segmentation of the aorta and the pulmonary arteries was developed and shown to enable accurate calculation of clinically relevant biomarkers in a population of 10 patients with CHD

    Superresolution Reconstruction for Magnetic Resonance Spectroscopic Imaging Exploiting Low-Rank Spatio-Spectral Structure

    Get PDF
    Magnetic resonance spectroscopic imaging (MRSI) is a rapidly developing medical imaging modality, capable of conferring both spatial and spectral information content, and has become a powerful clinical tool. The ability to non-invasively observe spatial maps of metabolite concentrations, for instance, in the human brain, can offer functional, as well as pathological insights, perhaps even before structural aberrations or behavioral symptoms are evinced. Despite its lofty clinical prospects, MRSI has traditionally remained encumbered by a number of practical limitations. Of primary concern are the vastly reduced concentrations of tissue metabolites when compared to that of water, which forms the basis for conventional MR imaging. Moreover, the protracted exam durations required by MRSI routinely approach the limits for patient compliance. Taken in conjunction, the above considerations effectively circumscribe the data collection process, ultimately translating to coarse image resolutions that are of diminished clinical utility. Such shortcomings are compounded by spectral contamination artifacts due to the system pointspread function, which arise as a natural consequence when reconstructing non-band-limited data by the inverse Fourier transform. These artifacts are especially pronounced near regions characterized by substantial discrepancies in signal intensity, for example, the interface between normal brain and adipose tissue, whereby the metabolite signals are inundated by the dominant lipid resonances. In recent years, concerted efforts have been made to develop alternative, non-Fourier MRSI reconstruction strategies that aim to surmount the aforementioned limitations. In this dissertation, we build upon the burgeoning medley of innovative and promising techniques, proffering a novel superresolution reconstruction framework predicated on the recent interest in low-rank signal modeling, along with state-of-the-art regularization methods. The proposed framework is founded upon a number of key tenets. Firstly, we proclaim that the underlying spatio-spectral distribution of the investigated object admits a bilinear representation, whereby spatial and spectral signal components can be effectively segregated. We further maintain that the dimensionality of the subspace spanned by the components is, in principle, bounded by a modest number of observable metabolites. Secondly, we assume that local susceptibility effects represent the primary sources of signal corruption that tend to disallow such representations. Finally, we assert that the spatial components belong to a class of real-valued, non-negative, and piecewise linear functions, compelled in part through the use of a total variation regularization penalty. After demonstrating superior spatial and spectral localization properties in both numerical and physical phantom data when compared against standard Fourier methods, we proceed to evaluate reconstruction performance in typical in vivo settings, whereby the method is extended in order to promote the recovery of signal variations throughout the MRSI slice thickness. Aside from the various technical obstacles, one of the cardinal prospective challenges for high-resolution MRSI reconstruction is the shortfall of reliable ground truth data prudent for validation, thereby prompting reservations surrounding the resulting experimental outcomes. [...

    The development and application of a simulation system for diffusion-weighted MRI

    Get PDF
    Diffusion-weighted MRI (DW-MRI) is a powerful, non-invasive imaging technique that allows us to infer the structure of biological tissue. It is particularly well suited to the brain, and is used by clinicians and researchers studying its structure in health and disease. High quality data is required to accurately characterise tissue structure with DW-MRI. Obtaining such data requires the careful optimisation of the image acquisition and processing pipeline, in order to maximise image quality and minimise artefacts. This thesis extends an existing MRI simulator to create a simulation system capable of producing realistic DW-MR data, with artefacts, and applies it to improve the acquisition and processing of such data. The simulator is applied in three main ways. Firstly, a novel framework for evaluating post-processing techniques is proposed and applied to assess commonly used strategies for the correction of motion, eddy-current and susceptibility artefacts. Secondly, it is used to explore the often overlooked susceptibility-movement interaction. It is demonstrated that this adversely impacts analysis of DW-MRI data, and a simple modification to the acquisition scheme is suggested to mitigate its impact. Finally, the simulation is applied to develop a new tool to perform automatic quality control. Simulated data is used to train a classifier to detect movement artefacts in data, with performance approaching that of a classifier trained on real data whilst requiring much less manually-labelled training data. It is hoped that both the findings in this thesis and the simulation tool itself will benefit the DW-MRI community. To this end, the tool is made freely available online to aid the development and validation of methods for acquiring and processing DW-MRI data

    Generating anatomical substructures for physically-based facial animation.

    Get PDF
    Physically-based facial animation techniques are capable of producing realistic facial deformations, but have failed to find meaningful use outside the academic community because they are notoriously difficult to create, reuse, and art-direct, in comparison to other methods of facial animation. This thesis addresses these shortcomings and presents a series of methods for automatically generating a skull, the superficial musculoaponeurotic system (SMAS – a layer of fascia investing and interlinking the mimic muscle system), and mimic muscles for any given 3D face model. This is done toward (the goal of) a production-viable framework or rig-builder for physically-based facial animation. This workflow consists of three major steps. First, a generic skull is fitted to a given head model using thin-plate splines computed from the correspondence between landmarks placed on both models. Second, the SMAS is constructed as a variational implicit or radial basis function surface in the interface between the head model and the generic skull fitted to it. Lastly, muscle fibres are generated as boundary-value straightest geodesics, connecting muscle attachment regions defined on the surface of the SMAS. Each step of this workflow is developed with speed, realism and reusability in mind

    Lung Imaging and Function Assessment using Non-Contrast-Enhanced Magnetic Resonance Imaging

    Get PDF
    Measurement of pulmonary ventilation and perfusion has significant clinical value for the diagnosis and monitoring of prevalent lung diseases. To this end, non-contrast-enhanced MRI techniques have emerged as a promising alternative to scintigraphical measurements, computed tomography, and contrast-enhanced MRI. Although these techniques allow the acquisition of both structural and functional information in the same scan session, they are prone to robustness issues related to imaging artifacts and post-processing techniques, limiting their clinical utilization. In this work, new acquisition and post-processing techniques were introduced for improving the robustness of non-contrast-enhanced MRI based functional lung imaging. Furthermore, pulmonary functional maps were acquired in 2-year-old congenital diaphragmatic hernia (CDH) patients to demonstrate the feasibility of non-contrast-enhanced MRI methods for functional lung imaging. In the first study, a multi-acquisition framework was developed to improve robustness against field inhomogeneity artifacts. This method was evaluated at 1.5T and 3T field strengths via acquisitions obtained from healthy volunteers. The results demonstrate that the proposed acquisition framework significantly improved ventilation map homogeneity p<0.05. In the second study, a post-processing method based on dynamic mode decomposition (DMD) was developed to accurately identify dominant spatiotemporal patterns in the acquisitions. This method was demonstrated on digital lung phantoms and in vivo acquisitions. The findings indicate that the proposed method led to a significant reduction in dispersion of estimated ventilation and perfusion map amplitudes across different number of measurements when compared with competing methods p<0.05. In the third study, the free-breathing non-contrast-enhanced dynamic acquisitions were obtained from 2-year-old patients after CDH repair, and then processed using the DMD to obtain pulmonary functional maps. Afterwards, functional differences between ipsilateral and contralateral lungs were assessed and compared with results obtained using contrast-enhanced MRI measurements. The results demonstrate that pulmonary ventilation and perfusion maps can be generated from dynamic acquisitions successfully without the need for ionizing radiation or contrast agents. Furthermore, lung perfusion parameters obtained with DMD MRI correlate very strongly with parameters obtained using dynamic contrast-enhanced MRI. In conclusion, the presented work improves the robustness and accuracy of non-contrast-enhanced functional lung imaging using MRI. Overall, the methods introduced in this work may serve as a valuable tool in the clinical adaptation of non-contrast-enhanced imaging methods and may be used for longitudinal assessments of pulmonary functional changes

    2011 UQ Engineering Postgraduate Research Conference

    Get PDF

    Three dimensional flame reconstruction towards the study of fire-induced transmission line flashovers.

    Get PDF
    Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, 2007.The work presented in this thesis focuses on the problem of reconstructing threedimensional models of fire from real images. The intended application of the reconstructions is for use in research into the phenomenon of fire-induced high voltage flashover, which, while a common problem, is not fully understood. As such the reconstruction must estimate not only the geometry of the flame but also the internal density structure, using only a set of a few synchronised images. Current flame reconstruction techniques are investigated, revealing that relatively little work has been done on the subject, and that most techniques follow either an exclusively geometric or tomographic direction. A novel method, termed the 3D Fuzzy Hull method, is proposed, incorporating aspects of tomography, statistical image segmentation and traditional object reconstruction techniques. By using physically based principles the flame images are related to the relative flame density, allowing the problem to be tackled from a tomographic perspective. A variation of algebraic tomography is then used to estimate the internal density field of the flame. This is done within a geometric framework by integrating the fuzzy c-means image segmentation technique and the visual hull concept into the process. Results are presented using synthetic and real flame image sets
    • …
    corecore