1,219 research outputs found

    Introductory Chapter: Introduction to Dependability Engineering

    Get PDF
    Cloud computing presents some challenges that are needed to be overcome, such as planning infrastructures that maintain availability when failure events and repair activities occu

    Software Fault Injection: A Practical Perspective

    Get PDF
    Software fault injection (SFI) is an acknowledged method for assessing the dependability of software systems. After reviewing the state-of-the-art of SFI, we address the challenge of integrating it deeper into software development practice. We present a well-defined development methodology incorporating SFI—fault injection driven development (FIDD)—which begins by systematically constructing a dependability and failure cause model, from which relevant injection techniques, points, and campaigns are derived. We discuss possibilities and challenges for the end-to-end automation of such campaigns. The suggested approach can substantially improve the accessibility of dependability assessment in everyday software engineering practice

    In-Production Continuous Testing for Future Telco Cloud

    Get PDF
    Software Defined Networking (SDN) is an emerging paradigm to design, build and operate networks. The driving motivation of SDN was the need for a major change in network technologies to support a configuration, management, operation, reconfiguration and evolution than in current computer networks. In the SDN world, performance it is not only related to the behaviour of the data plane. As the separation of control plane and data plane makes the latter significantly more agile, it lays off all the complex processing workload to the control plane. This is further exacerbated in distributed network controller, where the control plane is additionally loaded with the state synchronization overhead. Furthermore, the introduction of SDNs technologies has raised advanced challenges in achieving failure resilience, meant as the persistence of service delivery that can justifiably be trusted, when facing changes, and fault tolerance, meant as the ability to avoid service failures in the presence of faults. Therefore, along with the “softwarization” of network services, it is an important goal in the engineering of such services, e.g. SDNs and NFVs, to be able to test and assess the proper functioning not only in emulated conditions before release and deployment, but also “in-production”, when the system is under real operating conditions.   The goal of this thesis is to devise an approach to evaluate not only the performance, but also the effectiveness of the failure detection, and mitigation mechanisms provided by SDN controllers, as well as the capability of the SDNs to ultimately satisfy nonfunctional requirements, especially resiliency, availability, and reliability. The approach consists of exploiting benchmarking techniques, such as the failure injection, to get continuously feedback on the performance as well as capabilities of the SDN services to survive failures, which is of paramount importance to improve the effective- ness of the system internal mechanisms in reacting to anomalous situations potentially occurring in operation, while its services are regularly updated or improved. Within this vision, this dissertation first presents SCP-CLUB (SDN Control Plane CLoUd-based Benchmarking), a benchmarking frame- work designed to automate the characterization of SDN control plane performance, resilience and fault tolerance in telco cloud deployments. The idea is to provide the same level of automation available in deploying NFV function, for the testing of different configuration, using idle cycles of the telco cloud infrastructure. Then, the dissertation proposes an extension of the framework with mechanisms to evaluate the runtime behaviour of a Telco Cloud SDN under (possibly unforeseen) failure conditions, by exploiting the software failure injection

    Fault Injection Analytics: A Novel Approach to Discover Failure Modes in Cloud-Computing Systems

    Full text link
    Cloud computing systems fail in complex and unexpected ways due to unexpected combinations of events and interactions between hardware and software components. Fault injection is an effective means to bring out these failures in a controlled environment. However, fault injection experiments produce massive amounts of data, and manually analyzing these data is inefficient and error-prone, as the analyst can miss severe failure modes that are yet unknown. This paper introduces a new paradigm (fault injection analytics) that applies unsupervised machine learning on execution traces of the injected system, to ease the discovery and interpretation of failure modes. We evaluated the proposed approach in the context of fault injection experiments on the OpenStack cloud computing platform, where we show that the approach can accurately identify failure modes with a low computational cost.Comment: IEEE Transactions on Dependable and Secure Computing; 16 pages. arXiv admin note: text overlap with arXiv:1908.1164

    DEPENDABILITY BENCHMARKING OF NETWORK FUNCTION VIRTUALIZATION

    Get PDF
    Network Function Virtualization (NFV) is an emerging networking paradigm that aims to reduce costs and time-to-market, improve manageability, and foster competition and innovative services. NFV exploits virtualization and cloud computing technologies to turn physical network functions into Virtualized Network Functions (VNFs), which will be implemented in software, and will run as Virtual Machines (VMs) on commodity hardware located in high-performance data centers, namely Network Function Virtualization Infrastructures (NFVIs). The NFV paradigm relies on cloud computing and virtualization technologies to provide carrier-grade services, i.e., the ability of a service to be highly reliable and available, within fast and automatic failure recovery mechanisms. The availability of many virtualization solutions for NFV poses the question on which virtualization technology should be adopted for NFV, in order to fulfill the requirements described above. Currently, there are limited solutions for analyzing, in quantitative terms, the performance and reliability trade-offs, which are important concerns for the adoption of NFV. This thesis deals with assessment of the reliability and of the performance of NFV systems. It proposes a methodology, which includes context, measures, and faultloads, to conduct dependability benchmarks in NFV, according to the general principles of dependability benchmarking. To this aim, a fault injection framework for the virtualization technologies has been designed and implemented for the virtualized technologies being used as case studies in this thesis. This framework is successfully used to conduct an extensive experimental campaign, where we compare two candidate virtualization technologies for NFV adoption: the commercial, hypervisor-based virtualization platform VMware vSphere, and the open-source, container-based virtualization platform Docker. These technologies are assessed in the context of a high-availability, NFV-oriented IP Multimedia Subsystem (IMS). The analysis of experimental results reveal that i) fault management mechanisms are crucial in NFV, in order to provide accurate failure detection and start the subsequent failover actions, and ii) fault injection proves to be valuable way to introduce uncommon scenarios in the NFVI, which can be fundamental to provide a high reliable service in production

    Multilayer Environment and Toolchain for Holistic NetwOrk Design and Analysis

    Full text link
    The recent developments and research in distributed ledger technologies and blockchain have contributed to the increasing adoption of distributed systems. To collect relevant insights into systems' behavior, we observe many evaluation frameworks focusing mainly on the system under test throughput. However, these frameworks often need more comprehensiveness and generality, particularly in adopting a distributed applications' cross-layer approach. This work analyses in detail the requirements for distributed systems assessment. We summarize these findings into a structured methodology and experimentation framework called METHODA. Our approach emphasizes setting up and assessing a broader spectrum of distributed systems and addresses a notable research gap. We showcase the effectiveness of the framework by evaluating four distinct systems and their interaction, leveraging a diverse set of eight carefully selected metrics and 12 essential parameters. Through experimentation and analysis we demonstrate the framework's capabilities to provide valuable insights across various use cases. For instance, we identify that a combination of Trusted Execution Environments with threshold signature scheme FROST introduces minimal overhead on the performance with average latency around \SI{40}{\ms}. We showcase an emulation of realistic systems behavior, e.g., Maximal Extractable Value is possible and could be used to further model such dynamics. The METHODA framework enables a deeper understanding of distributed systems and is a powerful tool for researchers and practitioners navigating the complex landscape of modern computing infrastructures

    The future of Cybersecurity in Italy: Strategic focus area

    Get PDF
    This volume has been created as a continuation of the previous one, with the aim of outlining a set of focus areas and actions that the Italian Nation research community considers essential. The book touches many aspects of cyber security, ranging from the definition of the infrastructure and controls needed to organize cyberdefence to the actions and technologies to be developed to be better protected, from the identification of the main technologies to be defended to the proposal of a set of horizontal actions for training, awareness raising, and risk management
    • …
    corecore