7,668 research outputs found

    Developing High Performance Computing Resources for Teaching Cluster and Grid Computing courses

    Get PDF
    High-Performance Computing (HPC) and the ability to process large amounts of data are of paramount importance for UK business and economy as outlined by Rt Hon David Willetts MP at the HPC and Big Data conference in February 2014. However there is a shortage of skills and available training in HPC to prepare and expand the workforce for the HPC and Big Data research and development. Currently, HPC skills are acquired mainly by students and staff taking part in HPC-related research projects, MSc courses, and at the dedicated training centres such as Edinburgh University’s EPCC. There are few UK universities teaching the HPC, Clusters and Grid Computing courses at the undergraduate level. To address the issue of skills shortages in the HPC it is essential to provide teaching and training as part of both postgraduate and undergraduate courses. The design and development of such courses is challenging since the technologies and software in the fields of large scale distributed systems such as Cluster, Cloud and Grid computing are undergoing continuous change. The students completing the HPC courses should be proficient in these evolving technologies and equipped with practical and theoretical skills for future jobs in this fast developing area. In this paper we present our experience in developing the HPC, Cluster and Grid modules including a review of existing HPC courses offered at the UK universities. The topics covered in the modules are described, as well as the coursework projects based on practical laboratory work. We conclude with an evaluation based on our experience over the last ten years in developing and delivering the HPC modules on the undergraduate courses, with suggestions for future work

    Virtualizing the Stampede2 Supercomputer with Applications to HPC in the Cloud

    Full text link
    Methods developed at the Texas Advanced Computing Center (TACC) are described and demonstrated for automating the construction of an elastic, virtual cluster emulating the Stampede2 high performance computing (HPC) system. The cluster can be built and/or scaled in a matter of minutes on the Jetstream self-service cloud system and shares many properties of the original Stampede2, including: i) common identity management, ii) access to the same file systems, iii) equivalent software application stack and module system, iv) similar job scheduling interface via Slurm. We measure time-to-solution for a number of common scientific applications on our virtual cluster against equivalent runs on Stampede2 and develop an application profile where performance is similar or otherwise acceptable. For such applications, the virtual cluster provides an effective form of "cloud bursting" with the potential to significantly improve overall turnaround time, particularly when Stampede2 is experiencing long queue wait times. In addition, the virtual cluster can be used for test and debug without directly impacting Stampede2. We conclude with a discussion of how science gateways can leverage the TACC Jobs API web service to incorporate this cloud bursting technique transparently to the end user.Comment: 6 pages, 0 figures, PEARC '18: Practice and Experience in Advanced Research Computing, July 22--26, 2018, Pittsburgh, PA, US

    An innovative collaborative high-performance platform for simulation

    Get PDF
    This paper presents an innovative collaborative visualization platform for the simulation-based design applications. Following the scope and the main objectives, the general architecture based on the internet standard technologies is explained. Based on a multi-domain approach, several demonstrators are involved crossing interests of industrial and academic communities. Related to the field of process engineering, we adapt and deploy a web-based architecture research application on the targeted platform

    SIMDAT

    No full text

    HIL: designing an exokernel for the data center

    Full text link
    We propose a new Exokernel-like layer to allow mutually untrusting physically deployed services to efficiently share the resources of a data center. We believe that such a layer offers not only efficiency gains, but may also enable new economic models, new applications, and new security-sensitive uses. A prototype (currently in active use) demonstrates that the proposed layer is viable, and can support a variety of existing provisioning tools and use cases.Partial support for this work was provided by the MassTech Collaborative Research Matching Grant Program, National Science Foundation awards 1347525 and 1149232 as well as the several commercial partners of the Massachusetts Open Cloud who may be found at http://www.massopencloud.or
    • …
    corecore