5,154 research outputs found

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Introduction to Facial Micro Expressions Analysis Using Color and Depth Images: A Matlab Coding Approach (Second Edition, 2023)

    Full text link
    The book attempts to introduce a gentle introduction to the field of Facial Micro Expressions Recognition (FMER) using Color and Depth images, with the aid of MATLAB programming environment. FMER is a subset of image processing and it is a multidisciplinary topic to analysis. So, it requires familiarity with other topics of Artifactual Intelligence (AI) such as machine learning, digital image processing, psychology and more. So, it is a great opportunity to write a book which covers all of these topics for beginner to professional readers in the field of AI and even without having background of AI. Our goal is to provide a standalone introduction in the field of MFER analysis in the form of theorical descriptions for readers with no background in image processing with reproducible Matlab practical examples. Also, we describe any basic definitions for FMER analysis and MATLAB library which is used in the text, that helps final reader to apply the experiments in the real-world applications. We believe that this book is suitable for students, researchers, and professionals alike, who need to develop practical skills, along with a basic understanding of the field. We expect that, after reading this book, the reader feels comfortable with different key stages such as color and depth image processing, color and depth image representation, classification, machine learning, facial micro-expressions recognition, feature extraction and dimensionality reduction. The book attempts to introduce a gentle introduction to the field of Facial Micro Expressions Recognition (FMER) using Color and Depth images, with the aid of MATLAB programming environment.Comment: This is the second edition of the boo

    Meso-scale FDM material layout design strategies under manufacturability constraints and fracture conditions

    Get PDF
    In the manufacturability-driven design (MDD) perspective, manufacturability of the product or system is the most important of the design requirements. In addition to being able to ensure that complex designs (e.g., topology optimization) are manufacturable with a given process or process family, MDD also helps mechanical designers to take advantage of unique process-material effects generated during manufacturing. One of the most recognizable examples of this comes from the scanning-type family of additive manufacturing (AM) processes; the most notable and familiar member of this family is the fused deposition modeling (FDM) or fused filament fabrication (FFF) process. This process works by selectively depositing uniform, approximately isotropic beads or elements of molten thermoplastic material (typically structural engineering plastics) in a series of pre-specified traces to build each layer of the part. There are many interesting 2-D and 3-D mechanical design problems that can be explored by designing the layout of these elements. The resulting structured, hierarchical material (which is both manufacturable and customized layer-by-layer within the limits of the process and material) can be defined as a manufacturing process-driven structured material (MPDSM). This dissertation explores several practical methods for designing these element layouts for 2-D and 3-D meso-scale mechanical problems, focusing ultimately on design-for-fracture. Three different fracture conditions are explored: (1) cases where a crack must be prevented or stopped, (2) cases where the crack must be encouraged or accelerated, and (3) cases where cracks must grow in a simple pre-determined pattern. Several new design tools, including a mapping method for the FDM manufacturability constraints, three major literature reviews, the collection, organization, and analysis of several large (qualitative and quantitative) multi-scale datasets on the fracture behavior of FDM-processed materials, some new experimental equipment, and the refinement of a fast and simple g-code generator based on commercially-available software, were developed and refined to support the design of MPDSMs under fracture conditions. The refined design method and rules were experimentally validated using a series of case studies (involving both design and physical testing of the designs) at the end of the dissertation. Finally, a simple design guide for practicing engineers who are not experts in advanced solid mechanics nor process-tailored materials was developed from the results of this project.U of I OnlyAuthor's request

    The bacterial Sec-machinery as an antibiotic target

    Get PDF

    k-Means

    Get PDF

    Emerging Power Electronics Technologies for Sustainable Energy Conversion

    Get PDF
    This Special Issue summarizes, in a single reference, timely emerging topics related to power electronics for sustainable energy conversion. Furthermore, at the same time, it provides the reader with valuable information related to open research opportunity niches

    Pediatric and Adolescent Nephrology Facing the Future: Diagnostic Advances and Prognostic Biomarkers in Everyday Practice

    Get PDF
    The Special Issue entitled “Pediatric and adolescent nephrology facing the future: diagnostic advances and prognostic biomarkers in everyday practice” contains articles written in the era when COVID-19 had not yet been a major clinical problem in children. Now that we know its multifaceted clinical course, complications concerning the kidneys, and childhood-specific post-COVID pediatric inflammatory multisystem syndrome (PIMS), the value of diagnostic and prognostic biomarkers in the pediatric area should be appreciated, and their importance ought to increase

    Nanoprobes for Tumor Theranostics

    Get PDF
    This book reports cutting-edge technology in nanoprobes or nanobiomaterials used for the accurate diagnosis and therapy of tumors, involving a multidisciplinary of chemistry, materials science, oncology, biology, and medicine

    ATR-FTIR Spectroscopy-Linked Chemometrics:A Novel Approach to the Analysis and Control of the Invasive Species Japanese Knotweed

    Get PDF
    Japanese knotweed (Reynoutria japonica), an invasive plant species, causes negative environmental and socio-economic impacts. A female clone in the United Kingdom, its extensive rhizome system enables rapid vegetative spread. Plasticity permits this species to occupy a broad geographic range and survive harsh abiotic conditions. It is notoriously difficult to control with traditional management strategies, which include repetitive herbicide application and costly carbon-intensive rhizome excavation. This problem is complicated by crossbreeding with the closely related species, Giant knotweed (Reynoutria sachalinensis), to give the more vigorous hybrid, Bohemian knotweed (Fallopia x Bohemica) which produces viable seed. These species, hybrids, and backcrosses form a morphologically similar complex known as Japanese knotweed ‘sensu lato’ and are often misidentified. The research herein explores the opportunities offered by advances in the application of attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy-linked chemometrics within plant sciences, for the identification and control of knotweed, to enhance our understanding of knotweed biology, and the potential of this technique. ATR-FTIR spectral profiles of Japanese knotweed leaf material and xylem sap samples, which include important biological absorptions due to lipids, proteins, carbohydrates, and nucleic acids, were used to: identify plants from different growing regions highlighting the plasticity of this clonal species; differentiate between related species and hybrids; and predict key physiological characteristics such as hormone concentrations and root water potential. Technical advances were made for the application of ATR-FTIR spectroscopy to plant science, including definition of the environmental factors that exert the most significant influence on spectral profiles, evaluation of sample preparation techniques, and identification of key wavenumbers for prediction of hormone concentrations and abiotic stress. The presented results cement the position of concatenated mid-infrared spectroscopy and machine learning as a powerful approach for the study of plant biology, extending its reach beyond the field of crop science to demonstrate a potential for the discrimination between and control of invasive plant species
    corecore