10,431 research outputs found

    Selected Papers from Building A Better New Zealand (BBNZ 2014) Conference

    Get PDF

    Monitor Newsletter December 14, 1992

    Get PDF
    Official Publication of Bowling Green State University for Faculty and Staffhttps://scholarworks.bgsu.edu/monitor/1257/thumbnail.jp

    Eliciting Expertise

    No full text
    Since the last edition of this book there have been rapid developments in the use and exploitation of formally elicited knowledge. Previously, (Shadbolt and Burton, 1995) the emphasis was on eliciting knowledge for the purpose of building expert or knowledge-based systems. These systems are computer programs intended to solve real-world problems, achieving the same level of accuracy as human experts. Knowledge engineering is the discipline that has evolved to support the whole process of specifying, developing and deploying knowledge-based systems (Schreiber et al., 2000) This chapter will discuss the problem of knowledge elicitation for knowledge intensive systems in general

    An investigation into the use of B-Nodes and state models for computer network technology and education

    Get PDF
    This thesis consists of a series of internationally published, peer reviewed, conference research papers and one journal paper. The papers evaluate and further develop two modelling methods for use in Information Technology (IT) design and for the educational and training needs of students within the area of computer and network technology. The IT age requires technical talent to fill positions such as network managers, web administrators, e-commerce consultants and network security experts as IT is changing rapidly, and this is placing considerable demands on higher educational institutions, both within Australia and internationally, to respond to these changes

    INTELLIGENT DEMAND SIDE MANAGEMENT OF RESIDENTIAL BUILDING ENERGY SYSTEMS

    Get PDF
    Building energy performance has emerged as a major issue in recent years due to growing concerns over costs, resource limitations, and the potential impact on climate. According to the 2011 Buildings Energy Data Book (prepared by D&R International, Ltd. for the US Department of Energy, March 2012), the built environment demands about 41% of primary energy in the United States [1]. Given the emergence of modern sensing technologies and low-cost data-processing capabilities, there is a growing interest in better managing and controlling consumption within buildings. Estimates suggest that the simple act of continuous monitoring can lead to improvements on the order of 20% [118]. To further reduce and better control energy consumption, one can turn to the use of real-time energy-performance modeling. This thesis adopts the view that smaller buildings (i.e. homes and smaller commercial facilities), which represent more than half of the sector’s consumption, provide a rich opportunity for low-cost monitoring solutions. The real advantage lies in the growth of so-called smart meters for demand monitoring and advanced sensing for improved load control. In particular, this thesis considers the use of a small sensor package for the creation of autonomously developed, data-driven thermal models. Such models can be used to predict and control the consumption of space heating and cooling equipment, which currently represent about 50% of residential consumption in the United States. The key contribution of this work is the real-time identification of thermal parameters in homes using only two temperature sensors, solar irradiance measurements, and a power meter with load-tracking capabilities. The proposed identification technique uses the Prediction Error Method (PEM) to find a Multiple Input Single Output (MISO) state-space model. Two different models have been devised, and both have been field tested. The first focuses on energy forecasting and enables various diagnostic features; the other is formulated for more advanced capacity controls in vapor-compression air conditioners. A Model Predictive Control (MPC) scheme has been implemented and shown in simulation to yield energy reductions on the order of 30% over typical thermostatic control schemes. Similarly, the diagnostic model has been used to detect capacity degradation in operational units

    Stress intensity factors for surface cracks in round bar under single and combined loadings

    Get PDF
    This paper numerically discusses stress in-tensity factor (SIF) calculations for surface cracks in round bars subjected to single and combined loadings. Different crack aspect ratios, a/b, ranging from 0.0 to 1.2 and the relative crack depth, a/D, in the range of 0.1 to 0.6 are considered. Since the torsion loading is non-symmetrical, the whole ïŹnite element model has been constructed, and the loadings have been remotely applied to the model. The equivalent SIF, F∗EQ is then used to combine the individual SIF from the bending or tension with torsion loadings. Then, it is compared with the combined SIF, F∗FE obtained numerically using the ïŹnite element analysis under similar loadings. It is found that the equivalent SIF method successfully predicts the combined SIF, F∗EQ for Mode I when compared with F∗FE . However, some discrepancies between the results, determined from the two different approaches, occur when FIII is involved. Meanwhile, it is also noted that the F∗FE is higher than the F∗EQ due to the difference in crack face interactions and de-formations

    Washington University Record, April 10, 1997

    Get PDF
    https://digitalcommons.wustl.edu/record/1755/thumbnail.jp

    Literature Review of the History of Building Peak Load and Annual Energy Use Calculation Methods in the U.S.

    Get PDF
    This report provides a detailed literature review on the history of building peak heating and cooling load and annual energy use calculation methods from the 1800s to the present. Building annual energy use calculations include: forward methods, data-driven methods and simulation methods
    • 

    corecore