62,681 research outputs found

    Software Defined Networking for Smart Grid Communications

    Get PDF
    Emerging Software Defined Networking (SDN) technology has provided excellent flexibility to large-scale networks in terms of control, management, security, and maintenance. On the other hand, recent years witnessed a tremendous growth of the critical infrastructure networks, namely the Smart-Grid, in terms of its underlying communication infrastructure. Such large local networks requires significant effort in terms of network management and security. We explore the potential utilization of the SDN technology over the Smart Grid communication architecture. Specifically, we introduce three novel SDN deployment scenarios in local networks of Smart Grid. Moreover, we also investigate the pertinent security aspects with each deployment scenario along with possible solutions. On the other hand, we conducted experiments by using actual Smart Grid communication data to assess the recovery performance of the proposed SDN-based system. The results show that SDN is a viable technology for the Smart Grid communications with almost negligible delays in switching to backup wireless links

    Software defined neighborhood area network for smart grid applications

    Get PDF
    Information gathered from the Smart Grid (SG) devices located in end user premises provides a valuable resource that can be used to modify the behavior of SG applications. Decentralized and distributed deployment of neighborhood area network (NAN) devices makes it a challenge to manage SG efficiently. The NAN communication network architecture should be designed to aggregate and disseminate information among different SG domains. In this paper, we present a communication framework for NAN based on wireless sensor networks using the software defined networking paradigm. The data plane devices, such as smart meters, intelligent electronic devices, sensors, and switches are controlled via an optimized controller hierarchy deployed using a separate control plane. An analytical model is developed to determine the number of switches and controllers required for the NAN and the results of several test scenarios are presented. A Castalia based simulation model was used to analyze the performance of modified NAN performance

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Smart Grid Technologies in Europe: An Overview

    Get PDF
    The old electricity network infrastructure has proven to be inadequate, with respect to modern challenges such as alternative energy sources, electricity demand and energy saving policies. Moreover, Information and Communication Technologies (ICT) seem to have reached an adequate level of reliability and flexibility in order to support a new concept of electricity network—the smart grid. In this work, we will analyse the state-of-the-art of smart grids, in their technical, management, security, and optimization aspects. We will also provide a brief overview of the regulatory aspects involved in the development of a smart grid, mainly from the viewpoint of the European Unio
    • 

    corecore