17 research outputs found

    Spectrum Efficient Cognitive Radio Sensor Network for IoT with Low Energy Consumption

    Get PDF
    Cognitive Radio Sensor Networks (CRSNs) have emerged as a promising solution for efficient utilization of the limited frequency spectrum. One of the key challenges in CRSNs is achieving spectrum efficiency by avoiding interference and maximizing the use of the available spectrum. Particle Swarm Optimization (PSO) techniques have been widely used to optimize the spectrum allocation and improve the spectrum efficiency of CRSNs. In this paper the study provides an overview of the research on spectrum efficiency in CRSNs using PSO techniques and also discussed the key parameters that affect the spectrum efficiency, such as the swarm size, sensor's threshold and maximum number of iterations and highlights the importance of identifying the optimal combination of these parameters. This paper also emphasizes the need for further research and development in this area to improve the efficiency and effectiveness of PSO-based optimization techniques for CRSNs and to adapt them to various real-world scenarios. Achieving spectrum efficiency in CRSNs is critical for enabling effective wireless communication systems and improving the overall utilization of the available frequency spectrum

    Spectrally Modulated Spectrally Encoded Framework Based Cognitive Radio in Mobile Environment

    Get PDF
    Radio spectrum has become a precious resource, and it has long been the dream of wireless communication engineers to maximize the utilization of the radio spectrum. Dynamic Spectrum Access (DSA) and Cognitive Radio (CR) have been considered promising to enhance the efficiency and utilization of the spectrum. Since some of the spectrum bands are occupied by primary users (PUs), the available spectrum for secondary users (SUs) are non-contiguous, and multi-carrier transmission technologies become the natural solution to occupy those non-contiguous bands. Non-contiguous multi-carrier based modulations, such as NC-OFDM (non-contiguous Orthogonal Frequency Division Multiplexing), NC-MC-CDMA (non-contiguous multi-carrier code division multiple access) and NC-SC-OFDM (non-contiguous single carrier OFDM), allow the SUs to utilize the available spectrum. Spectrally Modulated Spectrally Encoded (SMSE) framework offers a general framework to generate multi-carrier based waveform for CR. However, it is well known that all multi-carrier transmission technologies suffer significant performance degradation resulting from inter-carrier interference (ICI) in high mobility environments. Current research work in cognitive radio has not sufficiently considered and addressed this issue yet. Hence, it is highly desired to study the effect of mobility on CR communication systems and how to improve the performance through affordable low-complexity signal processing techniques. In this dissertation, we analyze the inter-carrier interference for SMSE based multi-carrier transmissions in CR, and propose multiple ICI mitigation techniques and carrier frequency offset (CFO) estimator. Specifically, (1) an ICI self-cancellation algorithm is adapted to the MC-CDMA system by designing new spreading codes to enable the system with the capability to reduce the ICI; (2) a blind ICI cancellation technique named Total ICI Cancellation is proposed to perfectly remove the ICI effect for OFDM and MC-CDMA systems and provide the performance approximately identical to that of the systems without ICI; (3) a novel modulation scheme, called Magnitude Keyed Modulation (MKM), is proposed to combine with SC-OFDM system and provide ICI immunity feature so that the system performance is not affected by the mobility or carrier frequency offset; (4) a blind carrier frequency offset estimation algorithm is proposed to accurately estimate the CFO; (5) finally, compared to traditional ICI analysis and cancellation techniques with assumption of constant carrier frequency offset among all the subcarriers, subcarrier varying CFO scenario is considered for the wideband multi-carrier transmission and non-contiguous multi-carrier transmission for CR, and an ICI total cancellation algorithm is proposed for the multi-carrier system with subcarrier varying CFOs to entirely remove the ICI

    Spectrally Modulated Spectrally Encoded Framework Based Cognitive Radio in Mobile Environment

    Get PDF
    Radio spectrum has become a precious resource, and it has long been the dream of wireless communication engineers to maximize the utilization of the radio spectrum. Dynamic Spectrum Access (DSA) and Cognitive Radio (CR) have been considered promising to enhance the efficiency and utilization of the spectrum. Since some of the spectrum bands are occupied by primary users (PUs), the available spectrum for secondary users (SUs) are non-contiguous, and multi-carrier transmission technologies become the natural solution to occupy those non-contiguous bands. Non-contiguous multi-carrier based modulations, such as NC-OFDM (non-contiguous Orthogonal Frequency Division Multiplexing), NC-MC-CDMA (non-contiguous multi-carrier code division multiple access) and NC-SC-OFDM (non-contiguous single carrier OFDM), allow the SUs to utilize the available spectrum. Spectrally Modulated Spectrally Encoded (SMSE) framework offers a general framework to generate multi-carrier based waveform for CR. However, it is well known that all multi-carrier transmission technologies suffer significant performance degradation resulting from inter-carrier interference (ICI) in high mobility environments. Current research work in cognitive radio has not sufficiently considered and addressed this issue yet. Hence, it is highly desired to study the effect of mobility on CR communication systems and how to improve the performance through affordable low-complexity signal processing techniques. In this dissertation, we analyze the inter-carrier interference for SMSE based multi-carrier transmissions in CR, and propose multiple ICI mitigation techniques and carrier frequency offset (CFO) estimator. Specifically, (1) an ICI self-cancellation algorithm is adapted to the MC-CDMA system by designing new spreading codes to enable the system with the capability to reduce the ICI; (2) a blind ICI cancellation technique named Total ICI Cancellation is proposed to perfectly remove the ICI effect for OFDM and MC-CDMA systems and provide the performance approximately identical to that of the systems without ICI; (3) a novel modulation scheme, called Magnitude Keyed Modulation (MKM), is proposed to combine with SC-OFDM system and provide ICI immunity feature so that the system performance is not affected by the mobility or carrier frequency offset; (4) a blind carrier frequency offset estimation algorithm is proposed to accurately estimate the CFO; (5) finally, compared to traditional ICI analysis and cancellation techniques with assumption of constant carrier frequency offset among all the subcarriers, subcarrier varying CFO scenario is considered for the wideband multi-carrier transmission and non-contiguous multi-carrier transmission for CR, and an ICI total cancellation algorithm is proposed for the multi-carrier system with subcarrier varying CFOs to entirely remove the ICI

    A General Framework for Analyzing, Characterizing, and Implementing Spectrally Modulated, Spectrally Encoded Signals

    Get PDF
    Fourth generation (4G) communications will support many capabilities while providing universal, high speed access. One potential enabler for these capabilities is software defined radio (SDR). When controlled by cognitive radio (CR) principles, the required waveform diversity is achieved via a synergistic union called CR-based SDR. Research is rapidly progressing in SDR hardware and software venues, but current CR-based SDR research lacks the theoretical foundation and analytic framework to permit efficient implementation. This limitation is addressed here by introducing a general framework for analyzing, characterizing, and implementing spectrally modulated, spectrally encoded (SMSE) signals within CR-based SDR architectures. Given orthogonal frequency division multiplexing (OFDM) is a 4G candidate signal, OFDM-based signals are collectively classified as SMSE since modulation and encoding are spectrally applied. The proposed framework provides analytic commonality and unification of SMSE signals. Applicability is first shown for candidate 4G signals, and resultant analytic expressions agree with published results. Implementability is then demonstrated in multiple coexistence scenarios via modeling and simulation to reinforce practical utility

    Novel Interference And Spectrum Aware Routing Techniques}{for Cognitive Radio Ad Hoc Networks

    Get PDF
    Tez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2011Thesis (PhD) -- İstanbul Technical University, Institute of Science and Technology, 2011Yüksek hızlı kablosuz ağlara artan rağbet nedeniyle, radyo spektrumu dünya üzerinde en çok kullanılan ve pahalı doğal kaynaklardan biri haline gelmiştir. Lisanslı spektrumu etkin şekilde kullanma ve paylaşmaya olanak sağlaması nedeniyle radyo spektrumundan yararlanma potansiyelini arttıran bilişsel radyo teknolojisi büyük ilgi toplamaktadır. Söz konusu potansiyelden faydalanmak üzere bilişsel radyo ağları tasarlanırken üzerinde önemle durulması gereken en önemli konulardan bir tanesi de yönlendirmedir. Çalışmamızda bilişsel radyo ağlarında kullanılmak üzere önerilen yönlendirme teknikleri hakkında bir bakış açısı sunulmakla beraber asıl olarak girişim ve spektruma dayalı özgün yönlendirme teknikleri önerilmektedir. Öncelikle, spektrum kullanım karakteristikleri ve ağdaki akışların yarattığı girişim göz önüne alınarak yönlendirme ölçütleri tasarlanmıştır. Ayrıca, bilişsel radyo ağları için otonom dağıtık uyarlanır menzil kontrol stratejisi önerilmiştir. Bu önerilere ek olarak dağıtık ve etkin bir kümeleme tabanlı yönlendirme tekniği geliştirilmiştir. Son olarak, bilişsel radyo ağları için otonom dağıtık uyarlanır menzil kontrol stratejisi ve spektrum erişebilirliği ve girişim maliyeti ölçütlerini bir arada kullanan özgün bir yönlendirme tekniği önerilmiştir. Önerilen yeni yönlendirme ölçütlerinin kullanımı nedeniyle önerilen teknik trafiği kullanılabilir spektrumun daha çok ve girişimin daha az olduğu rotalara yönlendirmektedir. NS2 benzetim ortamı kullanılarak gerçekleştirilen testler, önerilen yöntemlerin bilişsel radyo ağlarına uygunluğunu ve ağ başarımını arttırdığını göstermiştir. Ayrıca güncel bilişsel radyo teknolojisini kullanan diğer yöntemlerle karşılaştırıldığında önerilen tekniklerin hem uçtan uca veri aktarımını arttırdığı hem de uçtan uca gecikmeyi azalttığı ve başarımlarının daha yüksek olduğu gözlemlenmiştir.Radio spectrum has become one of the most heavily used and expensive natural resource around the world because of the growing demand for high-speed wireless networks. Cognitive radio has received great attention due to tremendous potential to improve the utilization of the radio spectrum by efficiently reusing and sharing the licensed spectrum. To design such mobile cognitive radio networks, routing is one of the key challenging issues to be addressed and requires deep investigation. This study gives some insights about the potential routing approaches that can be employed, and suggests novel interference and spectrum aware routing techniques for cognitive radio networks. First, the spectrum usage characteristics, and the interference created by existing flows in the network both from the primary and secondary users are taken into account to define routing metrics. Next, an autonomous distributed adaptive transmission range control scheme for cognitive radio networks is proposed. A distributed and efficient cluster based routing technique, which benefits from new metrics, is also introduced. The last proposed routing algorithm incorporates novel metrics and autonomous distributed adaptive transmission range control mechanism to provide self adaptivity. As a consequence, the proposed protocol routes traffic across paths with better spectrum availability and reduced interference via these new routing metrics. Extensive experimental evaluations are performed in the ns2 simulator to show that proposed protocols provide better adaptability to the environment and maximize throughput, minimize end-to-end delay in a number of realistic scenarios and outperforms recently proposed routing protocols developed for cognitive radio networks.DoktoraPh

    Air Force Institute of Technology Research Report 2009

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, Mathematics, Statistics and Engineering Physics

    Air Force Institute of Technology Research Report 2010

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, Mathematics, Statistics and Engineering Physic

    Air Force Institute of Technology Research Report 2007

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, Mathematics, Statistics and Engineering Physics

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions
    corecore