5,724 research outputs found

    A Design Science Research Approach to Smart and Collaborative Urban Supply Networks

    Get PDF
    Urban supply networks are facing increasing demands and challenges and thus constitute a relevant field for research and practical development. Supply chain management holds enormous potential and relevance for society and everyday life as the flow of goods and information are important economic functions. Being a heterogeneous field, the literature base of supply chain management research is difficult to manage and navigate. Disruptive digital technologies and the implementation of cross-network information analysis and sharing drive the need for new organisational and technological approaches. Practical issues are manifold and include mega trends such as digital transformation, urbanisation, and environmental awareness. A promising approach to solving these problems is the realisation of smart and collaborative supply networks. The growth of artificial intelligence applications in recent years has led to a wide range of applications in a variety of domains. However, the potential of artificial intelligence utilisation in supply chain management has not yet been fully exploited. Similarly, value creation increasingly takes place in networked value creation cycles that have become continuously more collaborative, complex, and dynamic as interactions in business processes involving information technologies have become more intense. Following a design science research approach this cumulative thesis comprises the development and discussion of four artefacts for the analysis and advancement of smart and collaborative urban supply networks. This thesis aims to highlight the potential of artificial intelligence-based supply networks, to advance data-driven inter-organisational collaboration, and to improve last mile supply network sustainability. Based on thorough machine learning and systematic literature reviews, reference and system dynamics modelling, simulation, and qualitative empirical research, the artefacts provide a valuable contribution to research and practice

    Redefining Community in the Age of the Internet: Will the Internet of Things (IoT) generate sustainable and equitable community development?

    Get PDF
    There is a problem so immense in our built world that it is often not fully realized. This problem is the disconnection between humanity and the physical world. In an era of limitless data and information at our fingertips, buildings, public spaces, and landscapes are divided from us due to their physical nature. Compared with the intense flow of information from our online world driven by the beating engine of the internet, our physical world is silent. This lack of connection not only has consequences for sustainability but also for how we perceive and communicate with our built environment in the modern age. A possible solution to bridge the gap between our physical and online worlds is a technology known as the Internet of Things (IoT). What is IoT? How does it work? Will IoT change the concept of the built environment for a participant within it, and in doing so enhance the dynamic link between humans and place? And what are the implications of IoT for privacy, security, and data for the public good? Lastly, we will identify the most pressing issues existing in the built environment by conducting and analyzing case studies from Pomona College and California State University, Northridge. By analyzing IoT in the context of case studies we can assess its viability and value as a tool for sustainability and equality in communities across the world

    Machine Learning Research Trends in Africa: A 30 Years Overview with Bibliometric Analysis Review

    Full text link
    In this paper, a critical bibliometric analysis study is conducted, coupled with an extensive literature survey on recent developments and associated applications in machine learning research with a perspective on Africa. The presented bibliometric analysis study consists of 2761 machine learning-related documents, of which 98% were articles with at least 482 citations published in 903 journals during the past 30 years. Furthermore, the collated documents were retrieved from the Science Citation Index EXPANDED, comprising research publications from 54 African countries between 1993 and 2021. The bibliometric study shows the visualization of the current landscape and future trends in machine learning research and its application to facilitate future collaborative research and knowledge exchange among authors from different research institutions scattered across the African continent

    DEEP REINFORCEMENT LEARNING AND MODEL PREDICTIVE CONTROL APPROACHES FOR THE SCHEDULED OPERATION OF DOMESTIC REFRIGERATORS

    Get PDF
    Excess capacity of the UK’s national grid is widely quoted to be reducing to around 4% over the coming years as a consequence of increased economic growth (and hence power usage) and reductions in power generation plants. There is concern that short term variations in power demand could lead to serious wide-scale disruption on a national scale. This is therefore spawning greater attention on augmenting traditional generation plants with renewable and localized energy storage technologies, and consideration of improved demand side responses (DSR), where power consumers are incentivized to switch off assets when the grid is under pressure. It is estimated, for instance, that refrigeration/HVAC systems alone could account for ~14% of the total UK energy usage, with refrigeration and water heating/cooling systems, in particular, being able to act as real-time ‘buffer’ technologies that can be demand-managed to accommodate transient demands by being switched-off for short periods without damaging their outputs. Large populations of thermostatically controlled loads (TCLs) hold significant potential for performing ancillary services in power systems since they are well-established and widely distributed around the power network. In the domestic sector, refrigerators and freezers collectively constitute a very large electrical load since they are continuously connected and are present in almost most households. The rapid proliferation of the ‘Internet of Things’ (IoT) now affords the opportunity to monitor and visualise smart buildings appliances performance and specifically, schedule the operation of the widely distributed domestic refrigerator and freezers to collectively improve energy efficiency and reduce peak power consumption on the electrical grid. To accomplish this, this research proposes the real-time estimation of the thermal mass of individual refrigerators in a network using on-line parameter identification, and the co-ordinated (ON-OFF) scheduling of the refrigerator compressors to maintain their respective temperatures within specified hysteresis bands—commensurate with accommodating food safety standards. Custom Model Predictive Control (MPC) schemes and a Machine Learning algorithm (Reinforcement Learning) are researched to realize an appropriate scheduling methodology which is implemented through COTS IoT hardware. Benefits afforded by the proposed schemes are investigated through experimental trials which show that the co-ordinated operation of domestic refrigerators can 1) reduce the peak power consumption as seen from the perspective of the electrical power grid (i.e. peak power shaving), 2) can adaptively control the temperature hysteresis band of individual refrigerators to increase operational efficiency, and 3) contribute to a widely distributed aggregated load shed for Demand Side Response purposes in order to aid grid stability. Comparative studies of measurements from experimental trials show that the co-ordinated scheduling of refrigerators allows energy savings of between 19% and 29% compared to their traditional isolated (non-co-operative) operation. Moreover, by adaptively changing the hysteresis bands of individual fridges in response to changes in thermal behaviour, a further 20% of savings in energy are possible at local refrigerator level, thereby providing benefits to both network supplier and individual consumer

    Optimización del rendimiento y la eficiencia energética en sistemas masivamente paralelos

    Get PDF
    RESUMEN Los sistemas heterogéneos son cada vez más relevantes, debido a sus capacidades de rendimiento y eficiencia energética, estando presentes en todo tipo de plataformas de cómputo, desde dispositivos embebidos y servidores, hasta nodos HPC de grandes centros de datos. Su complejidad hace que sean habitualmente usados bajo el paradigma de tareas y el modelo de programación host-device. Esto penaliza fuertemente el aprovechamiento de los aceleradores y el consumo energético del sistema, además de dificultar la adaptación de las aplicaciones. La co-ejecución permite que todos los dispositivos cooperen para computar el mismo problema, consumiendo menos tiempo y energía. No obstante, los programadores deben encargarse de toda la gestión de los dispositivos, la distribución de la carga y la portabilidad del código entre sistemas, complicando notablemente su programación. Esta tesis ofrece contribuciones para mejorar el rendimiento y la eficiencia energética en estos sistemas masivamente paralelos. Se realizan propuestas que abordan objetivos generalmente contrapuestos: se mejora la usabilidad y la programabilidad, a la vez que se garantiza una mayor abstracción y extensibilidad del sistema, y al mismo tiempo se aumenta el rendimiento, la escalabilidad y la eficiencia energética. Para ello, se proponen dos motores de ejecución con enfoques completamente distintos. EngineCL, centrado en OpenCL y con una API de alto nivel, favorece la máxima compatibilidad entre todo tipo de dispositivos y proporciona un sistema modular extensible. Su versatilidad permite adaptarlo a entornos para los que no fue concebido, como aplicaciones con ejecuciones restringidas por tiempo o simuladores HPC de dinámica molecular, como el utilizado en un centro de investigación internacional. Considerando las tendencias industriales y enfatizando la aplicabilidad profesional, CoexecutorRuntime proporciona un sistema flexible centrado en C++/SYCL que dota de soporte a la co-ejecución a la tecnología oneAPI. Este runtime acerca a los programadores al dominio del problema, posibilitando la explotación de estrategias dinámicas adaptativas que mejoran la eficiencia en todo tipo de aplicaciones.ABSTRACT Heterogeneous systems are becoming increasingly relevant, due to their performance and energy efficiency capabilities, being present in all types of computing platforms, from embedded devices and servers to HPC nodes in large data centers. Their complexity implies that they are usually used under the task paradigm and the host-device programming model. This strongly penalizes accelerator utilization and system energy consumption, as well as making it difficult to adapt applications. Co-execution allows all devices to simultaneously compute the same problem, cooperating to consume less time and energy. However, programmers must handle all device management, workload distribution and code portability between systems, significantly complicating their programming. This thesis offers contributions to improve performance and energy efficiency in these massively parallel systems. The proposals address the following generally conflicting objectives: usability and programmability are improved, while ensuring enhanced system abstraction and extensibility, and at the same time performance, scalability and energy efficiency are increased. To achieve this, two runtime systems with completely different approaches are proposed. EngineCL, focused on OpenCL and with a high-level API, provides an extensible modular system and favors maximum compatibility between all types of devices. Its versatility allows it to be adapted to environments for which it was not originally designed, including applications with time-constrained executions or molecular dynamics HPC simulators, such as the one used in an international research center. Considering industrial trends and emphasizing professional applicability, CoexecutorRuntime provides a flexible C++/SYCL-based system that provides co-execution support for oneAPI technology. This runtime brings programmers closer to the problem domain, enabling the exploitation of dynamic adaptive strategies that improve efficiency in all types of applications.Funding: This PhD has been supported by the Spanish Ministry of Education (FPU16/03299 grant), the Spanish Science and Technology Commission under contracts TIN2016-76635-C2-2-R and PID2019-105660RB-C22. This work has also been partially supported by the Mont-Blanc 3: European Scalable and Power Efficient HPC Platform based on Low-Power Embedded Technology project (G.A. No. 671697) from the European Union’s Horizon 2020 Research and Innovation Programme (H2020 Programme). Some activities have also been funded by the Spanish Science and Technology Commission under contract TIN2016-81840-REDT (CAPAP-H6 network). The Integration II: Hybrid programming models of Chapter 4 has been partially performed under the Project HPC-EUROPA3 (INFRAIA-2016-1-730897), with the support of the EC Research Innovation Action under the H2020 Programme. In particular, the author gratefully acknowledges the support of the SPMT Department of the High Performance Computing Center Stuttgart (HLRS)

    Theatre, performance and digital culture

    Get PDF
    A thesis submitted to the University of Wolverhampton in partial fulfilment of the requirement of the degree of Doctor of Philosophy.This thesis proposes that the theory of aesthetic agency derived from gaming in digital culture may be used as a lens through which live theatre and performance may be analysed. I argue that the aesthetics, immersion and play with identity in live theatre and performance are informed by digital culture through the behaviour and agency of the participants, be they audience or participants. Using a grounded theory methodological approach, four large-scale outdoor immersive productions and two traditional theatrical productions have been selected to provide a comparative analysis using aesthetic agency. Aesthetic agency is central to the analysis of immersion and play with identity in the productions selected. Comprising intention, perceivable consequence, narrative potential, transformation, co-presence and presence aesthetic agency is the feeling of pleasure audience and participants derive through the experience of live theatre and performance. Analysis using aesthetic agency in immersive productions examines qualities such as interaction and participation, discovery, understanding social rules, proximity to points of engagement within the performance, the use of narrative or gameplay, liminality and the suspension of disbelief and the use of physical or imaginary boundaries. Aesthetic agency in play with identity uses qualities of transportation, presence and co-presence and is analysed using themes of liminality, ritual, agency and memory which offer the opportunity of real experience within the virtual environments. The outcomes of the study highlight the opportunities to analyse and understand the meaning making process in live theatre and performance in a new manner through the lens of aesthetic agency derived from digital culture. Through examples, the outcomes show how digital culture theory may be used in live theatre and performance to examine and explain the experience for spectators and participants. The future use of aesthetic agency as a dramaturgical tool then becomes a possibility which may enhance the development process and enrich the subsequent experience of spectators and participants. Further, aesthetic agency may find utility as a dramaturgical tool when used to aid the creation of new live productions
    corecore