346 research outputs found

    Software Dataplane Verification

    Get PDF
    Software dataplanes are emerging as an alternative to traditional hardware switches and routers, promising programmability and short time to market. These advantages are set against the risk of disrupting the network with bugs, unpredictable performance, or security vulnerabilities. We explore the feasibility of verifying software dataplanes to ensure smooth network operation. For general programs, verifiability and performance are competing goals; we argue that software dataplanes are different -- we can write them in a way that enables verification and preserves performance. We present a verification tool that takes as input a software dataplane, written in a way that meets a given set of conditions, and (dis)proves that the dataplane satisfies crash-freedom, bounded-execution, and filtering properties. We evaluate our tool on stateless and simple stateful Click pipelines; we perform complete and sound verification of these pipelines within tens of minutes, whereas a state-of-the-art general-purpose tool fails to complete the same task within several hours

    BPFabric: Data Plane Programmability for Software Defined Networks

    Get PDF
    In its current form, OpenFlow, the de facto implementation of SDN, separates the network’s control and data planes allowing a central controller to alter the matchaction pipeline using a limited set of fields and actions. To support new protocols, forwarding logic, telemetry, monitoring or even middlebox-like functions the currently available programmability in SDN is insufficient. In this paper, we introduce BPFabric, a platform, protocol, and language-independent architecture to centrally program and monitor the data plane. BPFabric leverages eBPF, a platform and protocol independent instruction set to define the packet processing and forwarding functionality of the data plane. We introduce a control plane API that allows data plane functions to be deployed onthe-fly, reporting events of interest and exposing network internal state. We present a raw socket and DPDK implementation of the design, the former for large-scale experimentation using environment such as Mininet and the latter for high-performance low-latency deployments. We show through examples that functions unrealisable in OpenFlow can leverage this flexibility while achieving similar or better performance to today’s static design

    SDN Access Control for the Masses

    Full text link
    The evolution of Software-Defined Networking (SDN) has so far been predominantly geared towards defining and refining the abstractions on the forwarding and control planes. However, despite a maturing south-bound interface and a range of proposed network operating systems, the network management application layer is yet to be specified and standardized. It has currently poorly defined access control mechanisms that could be exposed to network applications. Available mechanisms allow only rudimentary control and lack procedures to partition resource access across multiple dimensions. We address this by extending the SDN north-bound interface to provide control over shared resources to key stakeholders of network infrastructure: network providers, operators and application developers. We introduce a taxonomy of SDN access models, describe a comprehensive design for SDN access control and implement the proposed solution as an extension of the ONOS network controller intent framework
    • …
    corecore