9,798 research outputs found

    Automata for context-dependent connectors

    Get PDF
    Recent approaches to component-based software engineering employ coordinating connectors to compose components into software systems. For maximum flexibility and reuse, such connectors can themselves be composed, resulting in an expressive calculus of connectors whose semantics encompasses complex combinations of synchronisation, mutual exclusion, non-deterministic choice and state-dependent behaviour. A more expressive notion of connector includes also context-dependent behaviour, namely, whenever the choices the connector can take change non-monotonically as the context, given by the pending activity on its ports, changes. Context dependency can express notions of priority and inhibition. Capturing context-dependent behaviour in formal models is non-trivial, as it is unclear how to propagate context in- formation through composition. In this paper we present an intuitive automata-based formal model of context-dependent connectors, and argue that it is superior to previous attempts at such a model for the coordination language Reo

    A model of context-dependent component connectors

    Get PDF
    Recent approaches to component-based software engineering employ coordinat- ing connectors to compose components into software systems. For maximum flexibility and reuse, such connectors can themselves be composed, resulting in an expressive calculus of connectors whose semantics encompasses complex combinations of synchronisation, mutual exclusion, non-deterministic choice and state-dependent behaviour. A more expressive notion of connector includes also context-dependent behaviour, namely, whenever the choices a connector can take change non-monotonically as the context, given by the pending activity on its ports, changes. Context dependency can express notions of priority and inhi- bition. Capturing context-dependent behaviour in formal models is non-trivial, as it is unclear how to propagate context information through composition. In this paper we present an intuitive automata-based formal model of context- dependent connectors, and argue that it is superior to previous attempts at such a model for the coordination language Reo

    Taming hierarchical connectors

    Get PDF
    Building and maintaining complex systems requires good software engineering practices, including code modularity and reuse. The same applies in the context of coordination of complex component-based systems. This paper investigates how to verify properties of complex coordination patterns built hierarchically, i.e., built from composing blocks that are in turn built from smaller blocks. Most existing approaches to verify properties flatten these hierarchical models before the verification process, losing the hierarchical structure. We propose an approach to verify hierarchical models using containers as actions; more concretely, containers interacting with their neighbours. We present a dynamic modal logic tailored for hierarchical connectors, using Reo and Petri Nets to illustrate our approach. We realise our approach via a prototype implementation available online to verify hierarchical Reo connectors, encoding connectors and formulas into mCRL2 specifications and formulas.publishe

    Towards a design-by-contract based approach for realizable connector-centric software architectures

    Get PDF
    Despite being a widely-used language for specifying software systems, UML remains less than ideal for software architectures. Architecture description languages (ADLs) were developed to provide more comprehensive support. However, so far the application of ADLs in practice has been impeded by at least one of the following problems: (i) advanced formal notations, (ii) lack of support for complex connectors, and (iii) potentially unrealizable designs. In this paper we propose a new ADL that is based on Design-by-Contract (DbC) for specifying software architectures. While DbC promotes a formal and precise way of specifying system behaviours, it is more familiar to practising developers, thus allowing for a more comfortable way of specifying architectures than using process algebras. Furthermore, by granting connectors a first-class status, our ADL allows designers to specify not only simple interaction mechanisms as connectors but also complex interaction protocols. Finally, in order to ensure that architectural designs are always realizable we eliminate potentially unrealizable constructs in connector specifications (the connector “glue”)

    Ontology-based patterns for the integration of business processes and enterprise application architectures

    Get PDF
    Increasingly, enterprises are using Service-Oriented Architecture (SOA) as an approach to Enterprise Application Integration (EAI). SOA has the potential to bridge the gap between business and technology and to improve the reuse of existing applications and the interoperability with new ones. In addition to service architecture descriptions, architecture abstractions like patterns and styles capture design knowledge and allow the reuse of successfully applied designs, thus improving the quality of software. Knowledge gained from integration projects can be captured to build a repository of semantically enriched, experience-based solutions. Business patterns identify the interaction and structure between users, business processes, and data. Specific integration and composition patterns at a more technical level address enterprise application integration and capture reliable architecture solutions. We use an ontology-based approach to capture architecture and process patterns. Ontology techniques for pattern definition, extension and composition are developed and their applicability in business process-driven application integration is demonstrated
    corecore