16,492 research outputs found

    Linking design and manufacturing domains via web-based and enterprise integration technologies

    Get PDF
    The manufacturing industry faces many challenges such as reducing time-to-market and cutting costs. In order to meet these increasing demands, effective methods are need to support the early product development stages by bridging the gap of communicating early design ideas and the evaluation of manufacturing performance. This paper introduces methods of linking design and manufacturing domains using disparate technologies. The combined technologies include knowledge management supporting for product lifecycle management (PLM) systems, enterprise resource planning (ERP) systems, aggregate process planning systems, workflow management and data exchange formats. A case study has been used to demonstrate the use of these technologies, illustrated by adding manufacturing knowledge to generate alternative early process plan which are in turn used by an ERP system to obtain and optimise a rough-cut capacity plan

    A comparison of processing techniques for producing prototype injection moulding inserts.

    Get PDF
    This project involves the investigation of processing techniques for producing low-cost moulding inserts used in the particulate injection moulding (PIM) process. Prototype moulds were made from both additive and subtractive processes as well as a combination of the two. The general motivation for this was to reduce the entry cost of users when considering PIM. PIM cavity inserts were first made by conventional machining from a polymer block using the pocket NC desktop mill. PIM cavity inserts were also made by fused filament deposition modelling using the Tiertime UP plus 3D printer. The injection moulding trials manifested in surface finish and part removal defects. The feedstock was a titanium metal blend which is brittle in comparison to commodity polymers. That in combination with the mesoscale features, small cross-sections and complex geometries were considered the main problems. For both processing methods, fixes were identified and made to test the theory. These consisted of a blended approach that saw a combination of both the additive and subtractive processes being used. The parts produced from the three processing methods are investigated and their respective merits and issues are discussed

    Reducing risk in pre-production investigations through undergraduate engineering projects.

    Get PDF
    This poster is the culmination of final year Bachelor of Engineering Technology (B.Eng.Tech) student projects in 2017 and 2018. The B.Eng.Tech is a level seven qualification that aligns with the Sydney accord for a three-year engineering degree and hence is internationally benchmarked. The enabling mechanism of these projects is the industry connectivity that creates real-world projects and highlights the benefits of the investigation of process at the technologist level. The methodologies we use are basic and transparent, with enough depth of technical knowledge to ensure the industry partners gain from the collaboration process. The process we use minimizes the disconnect between the student and the industry supervisor while maintaining the academic freedom of the student and the commercial sensitivities of the supervisor. The general motivation for this approach is the reduction of the entry cost of the industry to enable consideration of new technologies and thereby reducing risk to core business and shareholder profits. The poster presents several images and interpretive dialogue to explain the positive and negative aspects of the student process

    A manufacturing model to support data-driven applications for design and manufacture

    Get PDF
    This thesis is primarily concerned with conceptual work on the Manufacturing Model. The Manufacturing Model is an information model which describes the manufacturing capability of an enterprise. To achieve general applicability, the model consists of the entities that are relevant and important for any type of manufacturing firm, namely: manufacturing resources (e.g. machines, tools, fixtures, machining cells, operators, etc.), manufacturing processes (e.g. injection moulding, machining processes, etc.) and manufacturing strategies (e.g. how these resources and processes are used and organized). The Manufacturing Model is a four level model based on a de—facto standard (i.e. Factory, Shop, Cell, Station) which represents the functionality of the manufacturing facility of any firm. In the course of the research, the concept of data—driven applications has emerged in response to the need of integrated and flexible computer environments for the support of design and manufacturing activities. These data—driven applications require the use of different information models to capture and represent the company's information and knowledge. One of these information models is the Manufacturing Model. The value of this research work is highlighted by the use of two case studies, one related with the representation of a single machining station, and the other, the representation of a multi-cellular manufacturing facility of a high performance company

    Inertia and Change in the Early Years: Employment Relations in Young, High Technology Firms

    Get PDF
    [Excerpt] This paper considers processes of organizational imprinting in a sample of 100 young, high technology companies. It examines the effects of a pair of initial conditions: the founders\u27 models of the employment relation and their business strategies. Our analyses indicate that these two features were well aligned when the firms were founded. However, the alignment has deteriorated over time, due to changes in the distribution of employment models. In particular, the \u27star\u27 model and \u27commitment\u27 model are less stable than the \u27engineering\u27 model and the \u27factory\u27 model. Despite their instability, these two blueprints for the employment relation have strong effects in shaping the early evolution of these firms. In particular, firms that embark with these models have significantly higher rates of replacing the founder chief executive with a non-founder as well as higher rates of completing an initial public stock offering. Some implications of these findings for future studies of imprinting and inertia in organizations are discussed

    Concurrent engineering, product life cycle management using cross-functional teams: a case study

    Get PDF
    Concurrent engineering (CE) aspires to foster a collaborative environment in which all players work cooperatively to optimize resource use. However, such variables can complicate execution in organizations. This analysis aims to detail creating and implementing a CE model in an Iraqi textile factory. Administrative and quality management procedures were used to collect process data. With the enterprise’s culture in mind, a CE model centered on modern product management was created. Two programs were used to validate the proposed model’s features. From three to one month, the time is taken to plan and approve inventions was reduced. The method now has a stable architecture due to finding deployment problems, potential operator errors, and bottlenecks. This research used a cross-functional team to accomplish the (CE) goal of shortening the product’s life cycle while focusing on the product’s quality requirements. Leading organizations understand that large cross-functional teams are critical to rapidly developing creative solutions

    Requirements modelling and formal analysis using graph operations

    Get PDF
    The increasing complexity of enterprise systems requires a more advanced analysis of the representation of services expected than is currently possible. Consequently, the specification stage, which could be facilitated by formal verification, becomes very important to the system life-cycle. This paper presents a formal modelling approach, which may be used in order to better represent the reality of the system and to verify the awaited or existing system’s properties, taking into account the environmental characteristics. For that, we firstly propose a formalization process based upon properties specification, and secondly we use Conceptual Graphs operations to develop reasoning mechanisms of verifying requirements statements. The graphic visualization of these reasoning enables us to correctly capture the system specifications by making it easier to determine if desired properties hold. It is applied to the field of Enterprise modelling

    Ontology based semantic-predictive model for reconfigurable automation systems

    Get PDF
    Due to increasing product variety and complexity, capability to support reconfiguration is a key competitiveness indicator for current automation system within large enterprises. Reconfigurable manufacturing systems could efficiently reuse existing knowledge in order to decrease the required skills and design time to launch new products. However, most of the software tools developed to support design of reconfigurable manufacturing system lack integration of product, process and resource knowledge, and the design data is not transferred from domain-specific engineering tools to a collaborative and intelligent platform to capture and reuse design knowledge. The focus of this research study is to enable integrated automation systems design to support a knowledge reuse approach to predict process and resource changes when product requirements change. The proposed methodology is based on a robust semantic-predictive model supported by ontology representations and predictive algorithms for the integration of Product, Process, Resource and Requirement (PPRR) data, so that future automation system changes can be identified at early design stages

    The development of factory templates for the integrated virtual factory framework

    Get PDF
    Páginas numeradas: I-XVI, 17-123Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores (Major Automação). Faculdade de Engenharia. Universidade do Porto. 201

    The development of factory templates for the integrated virtual factory framework

    Get PDF
    Páginas numeradas: I-XVI, 17-123Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores (Major Automação). Faculdade de Engenharia. Universidade do Porto. 201
    corecore