591 research outputs found

    Automatic Software Repair: a Bibliography

    Get PDF
    This article presents a survey on automatic software repair. Automatic software repair consists of automatically finding a solution to software bugs without human intervention. This article considers all kinds of repairs. First, it discusses behavioral repair where test suites, contracts, models, and crashing inputs are taken as oracle. Second, it discusses state repair, also known as runtime repair or runtime recovery, with techniques such as checkpoint and restart, reconfiguration, and invariant restoration. The uniqueness of this article is that it spans the research communities that contribute to this body of knowledge: software engineering, dependability, operating systems, programming languages, and security. It provides a novel and structured overview of the diversity of bug oracles and repair operators used in the literature

    Automated Fixing of Programs with Contracts

    Full text link
    This paper describes AutoFix, an automatic debugging technique that can fix faults in general-purpose software. To provide high-quality fix suggestions and to enable automation of the whole debugging process, AutoFix relies on the presence of simple specification elements in the form of contracts (such as pre- and postconditions). Using contracts enhances the precision of dynamic analysis techniques for fault detection and localization, and for validating fixes. The only required user input to the AutoFix supporting tool is then a faulty program annotated with contracts; the tool produces a collection of validated fixes for the fault ranked according to an estimate of their suitability. In an extensive experimental evaluation, we applied AutoFix to over 200 faults in four code bases of different maturity and quality (of implementation and of contracts). AutoFix successfully fixed 42% of the faults, producing, in the majority of cases, corrections of quality comparable to those competent programmers would write; the used computational resources were modest, with an average time per fix below 20 minutes on commodity hardware. These figures compare favorably to the state of the art in automated program fixing, and demonstrate that the AutoFix approach is successfully applicable to reduce the debugging burden in real-world scenarios.Comment: Minor changes after proofreadin

    Automatic error detection using program invariants for fault localization

    Get PDF
    Tese de Mestrado Integrado. Engenharia Informática e Computação. Faculdade de Engenharia. Universidade do Porto. 201

    Learning Tractable Probabilistic Models for Fault Localization

    Full text link
    In recent years, several probabilistic techniques have been applied to various debugging problems. However, most existing probabilistic debugging systems use relatively simple statistical models, and fail to generalize across multiple programs. In this work, we propose Tractable Fault Localization Models (TFLMs) that can be learned from data, and probabilistically infer the location of the bug. While most previous statistical debugging methods generalize over many executions of a single program, TFLMs are trained on a corpus of previously seen buggy programs, and learn to identify recurring patterns of bugs. Widely-used fault localization techniques such as TARANTULA evaluate the suspiciousness of each line in isolation; in contrast, a TFLM defines a joint probability distribution over buggy indicator variables for each line. Joint distributions with rich dependency structure are often computationally intractable; TFLMs avoid this by exploiting recent developments in tractable probabilistic models (specifically, Relational SPNs). Further, TFLMs can incorporate additional sources of information, including coverage-based features such as TARANTULA. We evaluate the fault localization performance of TFLMs that include TARANTULA scores as features in the probabilistic model. Our study shows that the learned TFLMs isolate bugs more effectively than previous statistical methods or using TARANTULA directly.Comment: Fifth International Workshop on Statistical Relational AI (StaR-AI 2015

    Dynamic Analysis can be Improved with Automatic Test Suite Refactoring

    Full text link
    Context: Developers design test suites to automatically verify that software meets its expected behaviors. Many dynamic analysis techniques are performed on the exploitation of execution traces from test cases. However, in practice, there is only one trace that results from the execution of one manually-written test case. Objective: In this paper, we propose a new technique of test suite refactoring, called B-Refactoring. The idea behind B-Refactoring is to split a test case into small test fragments, which cover a simpler part of the control flow to provide better support for dynamic analysis. Method: For a given dynamic analysis technique, our test suite refactoring approach monitors the execution of test cases and identifies small test cases without loss of the test ability. We apply B-Refactoring to assist two existing analysis tasks: automatic repair of if-statements bugs and automatic analysis of exception contracts. Results: Experimental results show that test suite refactoring can effectively simplify the execution traces of the test suite. Three real-world bugs that could previously not be fixed with the original test suite are fixed after applying B-Refactoring; meanwhile, exception contracts are better verified via applying B-Refactoring to original test suites. Conclusions: We conclude that applying B-Refactoring can effectively improve the purity of test cases. Existing dynamic analysis tasks can be enhanced by test suite refactoring

    Learning likely invariants to explain why a program fails

    Get PDF
    Debugging is difficult. Recent studies show that automatic bug localization techniques have limited usefulness. One of the reasons is that programmers typically have to understand why the program fails before fixing it. In this work, we aim to help programmers understand a bug by automatically generating likely invariants which are violated in the failed tests. Given a program with an initial assertion and at least one test case failing the assertion, we first generate random test cases, identify potential bug locations through bug localization, and then generate program state mutation based on active learning techniques to identify a predicate "explaining" the cause of the bug. The predicate is a classifier for the passed test cases and failed test cases. Our main contribution is the application of invariant learning for bug explanation, as well as a novel approach to overcome the problem of lack of test cases in practice. We apply our method to real-world bugs and show the generated invariants are often correlated to the actual bug fixes.Comment: 10 page
    • …
    corecore