712 research outputs found

    TCG based approach for secure management of virtualized platforms: state-of-the-art

    Get PDF
    There is a strong trend shift in the favor of adopting virtualization to get business benefits. The provisioning of virtualized enterprise resources is one kind of many possible scenarios. Where virtualization promises clear advantages it also poses new security challenges which need to be addressed to gain stakeholders confidence in the dynamics of new environment. One important facet of these challenges is establishing 'Trust' which is a basic primitive for any viable business model. The Trusted computing group (TCG) offers technologies and mechanisms required to establish this trust in the target platforms. Moreover, TCG technologies enable protecting of sensitive data in rest and transit. This report explores the applicability of relevant TCG concepts to virtualize enterprise resources securely for provisioning, establish trust in the target platforms and securely manage these virtualized Trusted Platforms

    RADIS: Remote Attestation of Distributed IoT Services

    Get PDF
    Remote attestation is a security technique through which a remote trusted party (i.e., Verifier) checks the trustworthiness of a potentially untrusted device (i.e., Prover). In the Internet of Things (IoT) systems, the existing remote attestation protocols propose various approaches to detect the modified software and physical tampering attacks. However, in an interoperable IoT system, in which IoT devices interact autonomously among themselves, an additional problem arises: a compromised IoT service can influence the genuine operation of other invoked service, without changing the software of the latter. In this paper, we propose a protocol for Remote Attestation of Distributed IoT Services (RADIS), which verifies the trustworthiness of distributed IoT services. Instead of attesting the complete memory content of the entire interoperable IoT devices, RADIS attests only the services involved in performing a certain functionality. RADIS relies on a control-flow attestation technique to detect IoT services that perform an unexpected operation due to their interactions with a malicious remote service. Our experiments show the effectiveness of our protocol in validating the integrity status of a distributed IoT service.Comment: 21 pages, 10 figures, 2 table

    Trusted Computing and Secure Virtualization in Cloud Computing

    Get PDF
    Large-scale deployment and use of cloud computing in industry is accompanied and in the same time hampered by concerns regarding protection of data handled by cloud computing providers. One of the consequences of moving data processing and storage off company premises is that organizations have less control over their infrastructure. As a result, cloud service (CS) clients must trust that the CS provider is able to protect their data and infrastructure from both external and internal attacks. Currently however, such trust can only rely on organizational processes declared by the CS provider and can not be remotely verified and validated by an external party. Enabling the CS client to verify the integrity of the host where the virtual machine instance will run, as well as to ensure that the virtual machine image has not been tampered with, are some steps towards building trust in the CS provider. Having the tools to perform such verifications prior to the launch of the VM instance allows the CS clients to decide in runtime whether certain data should be stored- or calculations should be made on the VM instance offered by the CS provider. This thesis combines three components -- trusted computing, virtualization technology and cloud computing platforms -- to address issues of trust and security in public cloud computing environments. Of the three components, virtualization technology has had the longest evolution and is a cornerstone for the realization of cloud computing. Trusted computing is a recent industry initiative that aims to implement the root of trust in a hardware component, the trusted platform module. The initiative has been formalized in a set of specifications and is currently at version 1.2. Cloud computing platforms pool virtualized computing, storage and network resources in order to serve a large number of customers customers that use a multi-tenant multiplexing model to offer on-demand self-service over broad network. Open source cloud computing platforms are, similar to trusted computing, a fairly recent technology in active development. The issue of trust in public cloud environments is addressed by examining the state of the art within cloud computing security and subsequently addressing the issues of establishing trust in the launch of a generic virtual machine in a public cloud environment. As a result, the thesis proposes a trusted launch protocol that allows CS clients to verify and ensure the integrity of the VM instance at launch time, as well as the integrity of the host where the VM instance is launched. The protocol relies on the use of Trusted Platform Module (TPM) for key generation and data protection. The TPM also plays an essential part in the integrity attestation of the VM instance host. Along with a theoretical, platform-agnostic protocol, the thesis also describes a detailed implementation design of the protocol using the OpenStack cloud computing platform. In order the verify the implementability of the proposed protocol, a prototype implementation has built using a distributed deployment of OpenStack. While the protocol covers only the trusted launch procedure using generic virtual machine images, it presents a step aimed to contribute towards the creation of a secure and trusted public cloud computing environment

    Trusted Launch of Generic Virtual Machine Images in Public IaaS Environments

    Get PDF
    Cloud computing and Infrastructure-as-a-Service (IaaS) are emerging and promising technologies, however their faster-pased adoption is hampered by data security concerns. In the same time, Trusted Computing (TC) is experiencing a revived interest as a security mechanism for IaaS. We address the lack of an implementable mechanism to ensure the launch of a virtual machine (VM) instance on a trusted remote host. Relying on Trusted Platform Modules operations such as binding and sealing to provide integrity guarantees for clients that require a trusted VM launch, we have designed a trusted launch protocol for generic VM images in public IaaS environments. We also present a proof-of-concept implemen- tation of the protocol based on OpenStack, an open-source IaaS platform. The results provide a basis for use of TC mechanisms within IaaS platforms and pave the way for a wider applicability of TC to IaaS security

    S-FaaS: Trustworthy and Accountable Function-as-a-Service using Intel SGX

    Full text link
    Function-as-a-Service (FaaS) is a recent and already very popular paradigm in cloud computing. The function provider need only specify the function to be run, usually in a high-level language like JavaScript, and the service provider orchestrates all the necessary infrastructure and software stacks. The function provider is only billed for the actual computational resources used by the function invocation. Compared to previous cloud paradigms, FaaS requires significantly more fine-grained resource measurement mechanisms, e.g. to measure compute time and memory usage of a single function invocation with sub-second accuracy. Thanks to the short duration and stateless nature of functions, and the availability of multiple open-source frameworks, FaaS enables non-traditional service providers e.g. individuals or data centers with spare capacity. However, this exacerbates the challenge of ensuring that resource consumption is measured accurately and reported reliably. It also raises the issues of ensuring computation is done correctly and minimizing the amount of information leaked to service providers. To address these challenges, we introduce S-FaaS, the first architecture and implementation of FaaS to provide strong security and accountability guarantees backed by Intel SGX. To match the dynamic event-driven nature of FaaS, our design introduces a new key distribution enclave and a novel transitive attestation protocol. A core contribution of S-FaaS is our set of resource measurement mechanisms that securely measure compute time inside an enclave, and actual memory allocations. We have integrated S-FaaS into the popular OpenWhisk FaaS framework. We evaluate the security of our architecture, the accuracy of our resource measurement mechanisms, and the performance of our implementation, showing that our resource measurement mechanisms add less than 6.3% latency on standardized benchmarks

    Integrity Verification of Distributed Nodes in Critical Infrastructures

    Get PDF
    The accuracy and reliability of time synchronization and distribution are essential requirements for many critical infrastructures, including telecommunication networks, where 5G technologies place increasingly stringent conditions in terms of maintaining highly accurate time. A lack of synchronization between the clocks causes a malfunction of the 5G network, preventing it from providing a high quality of service; this makes the time distribution network a very viable target for attacks. Various solutions have been analyzed to mitigate attacks on the Global Navigation Satellite System (GNSS) radio-frequency spectrum and the Precision Time Protocol (PTP) used for time distribution over the network. This paper highlights the significance of monitoring the integrity of the software and configurations of the infrastructural nodes of a time distribution network. Moreover, this work proposes an attestation scheme, based on the Trusted Computing principles, capable of detecting both software violations on the nodes and hardware attacks aimed at tampering with the configuration of the GNSS receivers. The proposed solution has been implemented and validated on a testbed representing a typical synchronization distribution network. The results, simulating various types of adversaries, emphasize the effectiveness of the proposed approach in a wide range of typical attacks and the certain limitations that need to be addressed to enhance the security of the current GNSS receivers

    Towards a Trustworthy Thin Terminal for Securing Enterprise Networks

    Get PDF
    Organizations have many employees that lack the technical knowledge to securely operate their machines. These users may open malicious email attachments/links or install unverified software such as P2P programs. These actions introduce significant risk to an organization\u27s network since they allow attackers to exploit the trust and access given to a client machine. However, system administrators currently lack the control of client machines needed to prevent these security risks. A possible solution to address this issue lies in attestation. With respect to computer science, attestation is the ability of a machine to prove its current state. This capability can be used by client machines to remotely attest to their state, which can be used by other machines in the network when making trust decisions. Previous research in this area has focused on the use of a static root of trust (RoT), requiring the use of a chain of trust over the entire software stack. We would argue this approach is limited in feasibility, because it requires an understanding and evaluation of the all the previous states of a machine. With the use of late launch, a dynamic root of trust introduced in the Trusted Platform Module (TPM) v1.2 specification, the required chain of trust is drastically shortened, minimizing the previous states of a machine that must be evaluated. This reduced chain of trust may allow a dynamic RoT to address the limitations of a static RoT. We are implementing a client terminal service that utilizes late launch to attest to its execution. Further, the minimal functional requirements of the service facilitate strong software verification. The goal in designing this service is not to increase the security of the network, but rather to push the functionality, and therefore the security risks and responsibilities, of client machines to the network€™s servers. In doing so, we create a platform that can more easily be administered by those individuals best equipped to do so with the expectation that this will lead to better security practices. Through the use of late launch and remote attestation in our terminal service, the system administrators have a strong guarantee the clients connecting to their system are secure and can therefore focus their efforts on securing the server architecture. This effectively addresses our motivating problem as it forces user actions to occur under the control of system administrators

    Secure migration of WebAssembly-based mobile agents between secure enclaves

    Get PDF
    Cryptography and security protocols are today commonly used to protect data at-rest and in-transit. In contrast, protecting data in-use has seen only limited adoption. Secure data transfer methods employed today rarely provide guarantees regarding the trustworthiness of the software and hardware at the communication endpoints. The field of study that addresses these issues is called Trusted or Confidential Computing and relies on the use of hardware-based techniques. These techniques aim to isolate critical data and its processing from the rest of the system. More specifically, it investigates the use of hardware isolated Secure Execution Environments (SEEs) where applications cannot be tampered with during operation. Over the past few decades, several implementations of SEEs have been introduced, each based on a different hardware architecture. However, lately, the trend is to move towards architecture-independent SEEs. As part of this, Huawei research project is developing a secure enclave framework that enables secure execution and migration of applications (mobile agents), regardless of the underlying architecture. This thesis contributes to the development of the framework by participating in the design and implementation of a secure migration scheme for the mobile agents. The goal is a scheme wherein it is possible to transfer the mobile agent without compromising the security guarantees provided by SEEs. Further, the thesis also provides performance measurements of the migration scheme implemented in a proof of concept of the framework
    • …
    corecore