4,912 research outputs found

    Performance analysis and optimization of automotive GPUs

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Advanced Driver Assistance Systems (ADAS) and Autonomous Driving (AD) have drastically increased the performance demands of automotive systems. Suitable highperformance platforms building upon Graphic Processing Units (GPUs) have been developed to respond to this demand, being NVIDIA Jetson TX2 a relevant representative. However, whether high-performance GPU configurations are appropriate for automotive setups remains as an open question. This paper aims at providing light on this question by modelling an automotive GPU (Jetson TX2), analyzing its microarchitectural parameters against relevant benchmarks, and identifying specific configurations able to meaningfully increase performance within similar cost envelopes, or to decrease costs preserving original performance levels. Overall, our analysis opens the door to the optimization of automotive GPUs for further system efficiency.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under grant TIN2015-65316-P, the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 772773) and the HiPEAC Network of Excellence. Pedro Benedicte and Jaume Abella have been partially supported by the MINECO under FPU15/01394 grant and Ramon y Cajal postdoctoral fellowship number RYC-2013-14717 respectively and Leonidas Kosmidis under Juan de la Cierva-Formacin postdoctoral fellowship (FJCI-2017-34095).Peer ReviewedPostprint (author's final draft

    A Guide to Distributed Digital Preservation

    Get PDF
    This volume is devoted to the broad topic of distributed digital preservation, a still-emerging field of practice for the cultural memory arena. Replication and distribution hold out the promise of indefinite preservation of materials without degradation, but establishing effective organizational and technical processes to enable this form of digital preservation is daunting. Institutions need practical examples of how this task can be accomplished in manageable, low-cost ways."--P. [4] of cove

    Fast Data in the Era of Big Data: Twitter's Real-Time Related Query Suggestion Architecture

    Full text link
    We present the architecture behind Twitter's real-time related query suggestion and spelling correction service. Although these tasks have received much attention in the web search literature, the Twitter context introduces a real-time "twist": after significant breaking news events, we aim to provide relevant results within minutes. This paper provides a case study illustrating the challenges of real-time data processing in the era of "big data". We tell the story of how our system was built twice: our first implementation was built on a typical Hadoop-based analytics stack, but was later replaced because it did not meet the latency requirements necessary to generate meaningful real-time results. The second implementation, which is the system deployed in production, is a custom in-memory processing engine specifically designed for the task. This experience taught us that the current typical usage of Hadoop as a "big data" platform, while great for experimentation, is not well suited to low-latency processing, and points the way to future work on data analytics platforms that can handle "big" as well as "fast" data

    DR.SGX: Hardening SGX Enclaves against Cache Attacks with Data Location Randomization

    Full text link
    Recent research has demonstrated that Intel's SGX is vulnerable to various software-based side-channel attacks. In particular, attacks that monitor CPU caches shared between the victim enclave and untrusted software enable accurate leakage of secret enclave data. Known defenses assume developer assistance, require hardware changes, impose high overhead, or prevent only some of the known attacks. In this paper we propose data location randomization as a novel defensive approach to address the threat of side-channel attacks. Our main goal is to break the link between the cache observations by the privileged adversary and the actual data accesses by the victim. We design and implement a compiler-based tool called DR.SGX that instruments enclave code such that data locations are permuted at the granularity of cache lines. We realize the permutation with the CPU's cryptographic hardware-acceleration units providing secure randomization. To prevent correlation of repeated memory accesses we continuously re-randomize all enclave data during execution. Our solution effectively protects many (but not all) enclaves from cache attacks and provides a complementary enclave hardening technique that is especially useful against unpredictable information leakage

    Energy Efficiency Analysis of Heterogeneous Cache-enabled 5G Hyper Cellular Networks

    Get PDF
    The emerging 5G wireless networks will pose extreme requirements such as high throughput and low latency. Caching as a promising technology can effectively decrease latency and provide customized services based on group users behaviour (GUB). In this paper, we carry out the energy efficiency analysis in the cache-enabled hyper cellular networks (HCNs), where the macro cells and small cells (SCs) are deployed heterogeneously with the control and user plane (C/U) split. Benefiting from the assistance of macro cells, a novel access scheme is proposed according to both user interest and fairness of service, where the SCs can turn into semi- sleep mode. Expressions of coverage probability, throughput and energy efficiency (EE) are derived analytically as the functions of key parameters, including the cache ability, search radius and backhaul limitation. Numerical results show that the proposed scheme in HCNs can increase the network coverage probability by more than 200% compared with the single- tier networks. The network EE can be improved by 54% than the nearest access scheme, with larger research radius and higher SC cache capacity under lower traffic load. Our performance study provides insights into the efficient use of cache in the 5G software defined networking (SDN)
    • …
    corecore