9,747 research outputs found

    Supporting service discovery, querying and interaction in ubiquitous computing environments.

    Get PDF
    In this paper, we contend that ubiquitous computing environments will be highly heterogeneous, service rich domains. Moreover, future applications will consequently be required to interact with multiple, specialised service location and interaction protocols simultaneously. We argue that existing service discovery techniques do not provide sufficient support to address the challenges of building applications targeted to these emerging environments. This paper makes a number of contributions. Firstly, using a set of short ubiquitous computing scenarios we identify several key limitations of existing service discovery approaches that reduce their ability to support ubiquitous computing applications. Secondly, we present a detailed analysis of requirements for providing effective support in this domain. Thirdly, we provide the design of a simple extensible meta-service discovery architecture that uses database techniques to unify service discovery protocols and addresses several of our key requirements. Lastly, we examine the lessons learnt through the development of a prototype implementation of our architecture

    Contrasting Views of Complexity and Their Implications For Network-Centric Infrastructures

    Get PDF
    There exists a widely recognized need to better understand and manage complex “systems of systems,” ranging from biology, ecology, and medicine to network-centric technologies. This is motivating the search for universal laws of highly evolved systems and driving demand for new mathematics and methods that are consistent, integrative, and predictive. However, the theoretical frameworks available today are not merely fragmented but sometimes contradictory and incompatible. We argue that complexity arises in highly evolved biological and technological systems primarily to provide mechanisms to create robustness. However, this complexity itself can be a source of new fragility, leading to “robust yet fragile” tradeoffs in system design. We focus on the role of robustness and architecture in networked infrastructures, and we highlight recent advances in the theory of distributed control driven by network technologies. This view of complexity in highly organized technological and biological systems is fundamentally different from the dominant perspective in the mainstream sciences, which downplays function, constraints, and tradeoffs, and tends to minimize the role of organization and design

    Enabling Disaster Resilient 4G Mobile Communication Networks

    Full text link
    The 4G Long Term Evolution (LTE) is the cellular technology expected to outperform the previous generations and to some extent revolutionize the experience of the users by taking advantage of the most advanced radio access techniques (i.e. OFDMA, SC-FDMA, MIMO). However, the strong dependencies between user equipments (UEs), base stations (eNBs) and the Evolved Packet Core (EPC) limit the flexibility, manageability and resiliency in such networks. In case the communication links between UEs-eNB or eNB-EPC are disrupted, UEs are in fact unable to communicate. In this article, we reshape the 4G mobile network to move towards more virtual and distributed architectures for improving disaster resilience, drastically reducing the dependency between UEs, eNBs and EPC. The contribution of this work is twofold. We firstly present the Flexible Management Entity (FME), a distributed entity which leverages on virtualized EPC functionalities in 4G cellular systems. Second, we introduce a simple and novel device-todevice (D2D) communication scheme allowing the UEs in physical proximity to communicate directly without resorting to the coordination with an eNB.Comment: Submitted to IEEE Communications Magazin

    ENABLING MOBILE DEVICES TO HOST CONSUMERS AND PROVIDERS OF RESTFUL WEB SERVICES

    Get PDF
    The strong growth in the use of mobile devices such as smartphones and tablets in Enterprise Information Systems has led to growing research in the area of mobile Web services. Web services are applications that are developed based on network standards such as Services Oriented Architecture and Representational State Transfer (REST). The mobile research community mostly focused on facilitating the mobile devices as client consumers especially in heterogeneous Web services. However, with the advancement in mobile device capabilities in terms of processing power and storage, this thesis seeks to utilize these devices as hosts of REST Web services. In order to host services on mobile devices, some key challenges have to be addressed. Since data and services accessibility is facilitated by the mobile devices which communicate via unstable wireless networks, the challenges of network latency and synchronization of data (i.e. the Web resources) among the mobile participants must be addressed. To address these challenges, this thesis proposes a cloud-based middleware that enables reliable communication between the mobile hosts in unreliable Wi-Fi networks. The middleware employs techniques such as message routing and Web resources state changes detection in order to push data to the mobile participants in real time. Additionally, to ensure high availability of data, the proposed middleware has a cache component which stores the replicas of the mobile hosts’ Web resources. As a result, in case a mobile host is disconnected, the Web resources of the host can be accessed on the middleware. The key contributions of this thesis are the identification of mobile devices as hosts of RESTful Web services and the implementation of middleware frameworks that support mobile communication in unreliable networks

    Applying Software Product Lines to Build Autonomic Pervasive Systems

    Full text link
    In this Master Thesis, we have proposed a model-driven Software Product Line (SPL) for developing autonomic pervasive systems. The work focusses on reusing the Variability knowledge from the SPL design to the SPL products. This Variability knowledge enables SPL products to deal with adaptation scenarios (evolution and involution) in an autonomic way.Cetina Englada, C. (2008). Applying Software Product Lines to Build Autonomic Pervasive Systems. http://hdl.handle.net/10251/12447Archivo delegad
    • …
    corecore